
Requirements Engineering Journal manuscript No.
(will be inserted by the editor)

Richard Torkar · Tony Gorschek · Robert Feldt ·
Uzair Akbar Raja · Kashif Kamran

Requirements traceability state-of-the-art:
A systematic review and industry case study

R. Torkar, T. Gorschek and R. Feldt

School of Engineering, Blekinge Institute of Technology,

PO Box 520, S-372 25 Ronneby, Sweden

Tel.: +46-457-385809

Fax: +46-457-27125

E-mail: {rto|tgo|rfd}@bth.se

*title page

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Requirements Engineering Journal manuscript No.
(will be inserted by the editor)

N/A

Requirements traceability state-of-the-art:
A systematic review and industry case study

Abstract Requirements traceability enables software en-
gineers to trace a requirement from its emergence to its
fulfillment. In this paper we examine requirements tra-
ceability definitions, challenges, tools and techniques, by
the use of a systematic review performing an exhaustive
search through the years 1997–2007. We present a num-
ber of common definitions, challenges, available tools and
techniques (presenting empirical evidence when found),
while complementing the results and analysis with a static
validation in industry through a series of interviews.

Keywords Requirements engineering · Requirements
traceability · Systematic review · Case study

1 Introduction

According to (Sommerville and Sawyer 1997) requirem-
ents engineering involves activities for discovering, doc-
umenting and maintaining a set of requirements for a
system. Requirements engineering (RE) activities are of-
ten divided into five categories: Requirement elicitation,
requirement analysis, requirement specification, require-
ment validation and requirements management.

Requirements management assists in maintaining a
requirement’s evolution throughout a development project.
According to (Sommerville and Sawyer 1997), requirem-
ents management is concerned with all processes involved
in changing system requirements and (Gorschek 2006;
Gorschek and Wohlin 2005) conclude that documenta-
tion, change management and traceability are the key
activities of requirements management (RM), which is
part of RE. One of the main tasks of RM is to assure req-
uirements traceability (RT) from start throughout the
artifact’s lifetime. Traceability is also recommended as
a necessary activity by e.g. IEEE Std. 830–1998 (IEEE
Society 1998) and CMMI (CMMI 2008).

(Gotel and Finkelstein 1997) define requirements tra-
ceability (RT) as “the ability to describe and follow the

N/A

life of a requirement in both forwards and backwards di-
rection (i.e. from its origins, through its development and
specification to its, subsequent deployment and use, and
through periods of on-going refinement and iteration in
any of these phases).”

The definition of RT by (Gotel and Finkelstein 1997)
is considered to be a comprehensive definition and is
cited by several researchers and the same definition is
also quoted at the Software Engineering Institute’s web-
site (SEI 2008).

According to (Gotel and Finkelstein 1994) there are
two aspects of RT: Pre- and post-RS traceability. Pre-RS
traceability is concerned with those aspects of a require-
ment’s life from the point before it is included in the
software requirements specification (SRS) (Aurum and
Wohlin 2005). In pre-RS traceability, requirements are
related to their origin and other requirements. The origin
of requirements includes stakeholders, business rules or
previous documents. Post-RS traceability, on the other
hand, is concerned with those aspects of a requirement’s
life from the point after it is included in the SRS (Aurum
and Wohlin 2005). Post-RS traceability ensures that all
requirements are fulfilled. In post-RS traceability, req-
uirements are often related to test cases that ensure that
software items satisfy the requirements.

Beside these two aspects of RT others have classified
traceability into the following four types (Sommerville
and Kotonya 1998):

– Backward-from traceability: Links requirements to
their sources which are in e.g. other documents.

– Forward-from traceability: Links requirements to the
design and implementation components.

– Backward-to traceability: Links design and implemen-
tation components back to the requirements.

– Forward-to traceability: Links other documents to
relevant requirements, e.g. operation manuals describ-
ing the system functionality.

Initially RT was mostly used in the development of
safety critical systems only. Nowadays RT has been proven
to be beneficial in most types of development:

*Manuscript
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2

– Requirements traceability helps to identify the source
of the requirement whether issued by a person or doc-
ument or group of persons (Ramesh 1998).

– Requirements traceability helps in performing impact
analysis (Abran et al. 2004), which traces to what
other component(s) might be affected in response to
change in a particular requirement.

– Requirements traceability helps in test case verifica-
tion, e.g. which test cases verify a certain requirement
(Ramesh 1998).

– Requirements traceability assists in tracking the over-
all progress of the project, e.g. one can measure how
many requirements are implemented, how many are
still in the design phase and how many are completed.

– Requirements are many times interdependent on each
other and on other artifacts (Carlshamre et al. 2001).
Requirements traceability helps in tracing this rela-
tionship.
This paper aims to establish the state-of-the-art of

requirements traceability as well as to identify the main
challenges reported by research and industry. In order to
achieve this a systematic review was performed covering
the years 1997–2007. As a second step two case studies
were performed to validate and complement the review
findings.

1.1 Research questions

Two research questions will be answered through a se-
ries of questions connected to the review and its review
protocol:
RQ 1 What is requirements traceability based on the state-

of-the-art in research and standards?

The research on requirements traceability will be car-
ried out mainly by the use of a systematic review (Kitchen-
ham 2004). The focus of this systematic review will be
on requirements traceability from 1997–2007. This will
help in identifying, clarifying and understanding requir-
ements traceability in general and requirements traceab-
ility tools and techniques in particular.
RQ 2 What are the main factors reported by academia

and industry as hindering (proper) implementation of

requirements traceability?

Some of the factors, for instance lack of coordination
between people, failure to follow standards, requirements
traceability costs, may obstruct the implementation of
requirements traceability policies; however contributions
from researchers will hopefully clarify to what extent,
and why, this happens. Interviews will be conducted in
industry to find out if there are any impeding factors
which are not reported in literature.

1.2 Research methodology

A mixed approach using both quantitative and qualita-
tive research methodologies was adopted for this study.

Through the systematic review, very much a quantitative
method, requirements traceability is mapped as an area
through a number of definitions and a number of issues
regarding requirements traceability are presented. Even
though the quantitative results were significant, there
was still a need to complement the results with accompa-
nying semi-structured interviews (Seaman 1999) carried
out in industry.

2 Systematic review

A systematic literature review provides a mechanism for
evaluating, identifying and interpreting all available re-
search relevant to a particular research question, topic
area or phenomenon of interest (Kitchenham 2004). In-
dividual studies contributing to the systematic review
are known as primary studies while a systematic review
is a secondary study.

A systematic review compromises three main phases:
Planning the review, executing the review and report-
ing the review. In the planning phase the need for the
systematic literature review is identified and a review
protocol is developed. This review protocol serves as
a comprehensive search guide throughout the system-
atic literature review. Executing the literature review
involves identification of research, primary studies se-
lection, study quality assessment, data extraction and
monitoring, and data synthesis. The phase of reporting
the systematic literature review is a single stage phase.

The stages involved in a systematic literature review
seem to be sequential but actually they may involve a
number of iterations (Kitchenham 2004). For example,
many activities in the review protocol like search terms,
inclusion and exclusion criteria for primary studies, are
revised while the review is in progress.

The objective of this systematic review is to summa-
rize the work done in RT during the years 1997–2007.

2.1 Development of review protocol

The purpose of the study described in this review pro-
tocol is to review the current status of research in req-
uirements traceability from 01 Jan., 1997 to 30 Sept.,
2007.

Systematic review questions The following questions (di-
rectly or indirectly connected to Research Questions 1
and 2) will be answered during the systematic review:

Q1. What is requirements traceability based on state-of-
the-art research?

Q2. What are the challenges when implementing requir-
ements traceability and how does research address
these challenges?

Q3. Which are the various requirements traceability tools
according to research literature?

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

Q4. What requirements traceability techniques are cov-
ered in research literature?

Search strategy The search process was executed through
online search using search terms and resources to be
searched. The following search terms were used to ex-
tract primary studies:

1. Requirements Traceability
2. Requirements Traceability Technique
3. Traceability
4. Requirements Tracing
5. 1 AND Challenges
6. 1 AND Problems
7. 1 AND Issues
8. 1 AND Success Stories
9. 2 AND Challenges

10. 2 AND Problems
11. 2 AND Issues
12. 2 AND Success Stories
13. 1 AND Experience Reports
14. 1 AND Process Improvement
15. 1 AND Impact
16. 1 AND Experiences
17. 1 AND Lessons Learned
18. 1 AND Good Practices
19. 1 AND Standards
20. 1 AND Return on Investment
21. 1 AND ROI

The following online resources were used during the
systematic review:

– IEEE Xplorer
– ACM Digital Library
– Springer Link
– Inspec
– Compendex

In addition to the online search a number of con-
ference proceedings and journals were manually investi-
gated, starting from January 1997 to September 2007, to
reduce the risk of excluding an important article by mis-
stake. The top-6 journals and top-3 proceedings showing
up in the pilot searches are to be found in the first col-
umn in Table 1 and will be further elaborated on later
in this section.

Study selection criteria and procedures

– Study Inclusion Criteria. The articles on RT pub-
lished between 01 Jan., 1997 and 30 Sept., 2007 were
included. The following questions were used to help
judge the suitability:
1. Is the article available in full-text?
2. Is it a peer-reviewed article?
3. Does it contain a case study, experiment, survey,

experience report, comparative evaluation and/or
action research?

4. Does it report success, issues and/or failures or
any type of experience concerning RT?

5. Is it based on research done in the RT area?
6. Does it contain definitions on RT?
7. Does it introduce new and important claims re-

garding RT and supporting these claims with some
sort of evidence?

8. Does it identify problems and/or challenges in
RT?

9. Does it provide some sort of solution, roadmap or
framework related to traceability problems?

10. Does it evaluate or compare two or more RT tech-
niques?

– Study Exclusion Criteria.
– If the answer is ‘no’ to question 1 or 2, the study

is excluded immediately.
– At lest of the questions 3–10 must be answered

‘yes’.

Study selection process The study selection process was
based on the title, abstract and conclusion of the research
paper. If it satisfied the inclusion criteria the complete
research paper was read.

Study quality assessment and procedures The selected
articles were then evaluated based on the following cri-
teria:

1. Introduction. Does the introduction provide an over-
view of RT?

2. Method. Was the research methodology clearly de-
fined in the research paper?

3. Results. Were the study results presented in a clear
manner? Do the results help to solve an RT problem?
What types of validity threats were defined for the
results?

4. Analysis. How was data analyzed? What type of anal-
ysis techniques were used? If the article scontained a
framework, then has it been validated in an industrial
setting?

5. Discussion and/or conclusion. Were negative findings
properly reported? Were there any limits or restric-
tions imposed on the conclusions claims?

Data extraction strategy In order to obtain the informa-
tion from each primary study the following data extrac-
tion form was used:

1. General information regarding research paper
(a) Article title
(b) Author(s) name(s)
(c) Journal, conference proceeding
(d) Search terms used to retrieve research article
(e) Retrieval database of research article
(f) Date of publication

2. Specific information regarding research paper
(a) Study environment

i. Industry

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

Table 1 Articles on requirements traceability in selected journals and proceedings (the rightmost column). The second
column lists the total number of articles found during the time span (1997–2007).

Journal Articles Articles (RT)
IEEE Transactions on Software Engineering (TSE) 751 4
ACM Transactions on Software Engineering Methodology (TOSEM) 139 1
Springer Requirements Engineering Journal 144 2
Springer Innovations in Systems and Software Engineering 48 2
Springer Software and Systems Modeling 106 1
Springer Annals of Software Engineering 150 2

Conference Proceeding
ACM International Conference on Software Engineering (ICSE) 1,272 3
IEEE International Conference on Requirements Engineering (RE) 357 12
IEEE International Symposium on Requirements Engineering 120 2

Total 3,087 29

ii. Academia
(b) Research methodology

i. Action research
ii. Experiment
iii. Case study
iv. Survey

(c) Subjects
i. Professionals
ii. Students
iii. Number of subjects
iv. Subject selection

(d) Requirements traeability
i. Definition of RT
ii. Challenges with RT
iii. Problems with RT
iv. Solutions to RT problems

A. Model or framework for RT
B. Requirements traceability tools
C. Number of RT techniques used in model

and/or framework
D. Name(s) of RT technique(s) used in model

and/or framework
E. Evidence regarding validation of proposed

model and/or framework
v. Requirements traceability techniques

A. Evaluation of RT techniques
B. Comparison of RT techniques

(e) Validity threats
i. Conclusion
ii. Construct
iii. Internal
iv. External

Synthesis of extracted data In a systematic review, data
synthesis is done by collecting and summarizing the re-
sults of the included primary studies. The studies in-
cluded in a systematic review are different from each
other based on their methodology and outcomes. These
types of studies are known as heterogeneous. Due to the
heterogeneous nature of the data a qualitative synthesis
was used. The qualitative synthesis was done by reading
and analyzing the research articles.

2.2 Evaluating the review protocol

The review protocol is a critical element of the system-
atic review and therefore an agreed validation process
should be carried out in order to evaluate the protocol.
(Kitchenham 2004) recommends conducting one or more
pilot searches to identify the potential primary studies
using search terms and search resources which are de-
fined in the review protocol. The review protocol was
peer-reviewed by three senior researchers which all had
previous experience in conducting systematic literature
reviews.

2.3 Execution of review

The selection of primary studies is a two-stage process. In
the first stage the title, abstract and conclusion of a pa-
per is studied and irrelevant papers are rejected. In the
second stage the selected research papers are reviewed
based on the inclusion and exclusion criteria defined in
the review protocol to obtain a final list of primary stud-
ies. In this systematic literature more than 3, 087 arti-
cles were scanned and initially 75 articles were selected.
Then, after applying inclusion and exclusion criteria 52
articles were finally selected for a complete review (Ta-
ble 2). The rejected articles are listed in (Torkar et al.
2008b).

The search was carried out in two steps. During the
first step the selected electronic resources were explored
online using the search terms defined in the review pro-
tocol. Research papers related to RT were downloaded
and their details were recorded. In the second step the se-
lected conference proceedings and journals were searched
manually year by year (Table 1). Research papers related
to RT were first searched in the records. If they were not
found in the records they were then downloaded.

Only three research papers (Hayes et al. 2007; Ji-
rapanthong and Zisman 2007; Shin et al. 2005) were
found by manually exploring the sources listed in Ta-
ble 1. These papers were downloaded and their details
recorded. Concerning the distribution of research pa-
pers in relation to our selected journals and proceedings

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

Table 2 Primary studies as found by the systematic review.

Ref. Title
(Ahn and Chong 2006) A Feature-Oriented Requirements Tracing Method: A Study of Cost-Benefit Analysis
(Antoniol et al. 2002) Recovering Traceability Links Between Code and Documentation
(Arkley and Riddle 2005) Overcoming the Traceability Benefit Problem
(Bashir and Qadir 2006) Traceability Techniques: A Critical Study
(Blaauboer et al. 2007) Deciding to Adopt Requirements Traceability in Practice
(Bouquet et al. 2005) Requirements Traceability in Automated Test Generation Application to Smart Card Software Vali-

dation
(Bubl and Balser 2005) Tracing Cross-Cutting Requirements via Context-Based Constraints
(Cleland-Huang et al. 2002a) Supporting Event-Based Traceability through High-Level Recognition of Change Events
(Cleland-Huang et al. 2002b) Automating Speculative Queries through Event-based Requirements Traceability
(Cleland-Huang et al. 2003a) Event-Based Traceability for Managing Evolutionary Change
(Cleland-Huang et al. 2003b) Automating Performance-Related Impact Analysis through Event-Based Traceability
(Cleland-Huang et al. 2004) A Heterogeneous Solution for Improving the Return on Investment of Requirements Traceability
(Cleland-Huang 2005) Toward Improved Traceability of Non-Functional Requirements
(Cleland-Huang et al. 2005a) Goal-Centric Traceability for Managing Non-Functional Requirements
(Cleland-Huang et al. 2005b) Utilizing Supporting Evidence to Improve Dynamic Requirements Traceability
(Cleland-Huang et al. 2007) Best Practices for Automated Traceability
(de Lucia et al. 2007) Recovering Traceability Links in Software Artifact Management Systems using Information Retrieval

Methods
(Dekhtyar et al. 2006) Advancing Candidate Link Generation for Requirements Tracing: The Study of Methods
(Dick 2005) Design Traceability
(Egyed and Grünbacher 2002) Automating Requirements Traceability: Beyond the Record & Replay Paradigm
(Gotel and Finkelstein 1997) Extended Requirements Traceability: Results of an Industrial Case Study
(Gotel and Morris 2006) Crafting the Requirements Record With the Informed Use of Media
(Gross and Yu 2001) From non-functional requirements to design through patterns
(Han 2001) TRAM: A Tool for Requirements and Architecture Management
(Hayes et al. 2003) Improving Requirements Tracing via Information Retrieval
(Hayes et al. 2005) Improving After-the-Fact Tracing and Mapping: Supporting Software Quality Predictions
(Hayes et al. 2007) REquirements TRacing On target (RETRO): Improving Software Maintenance through Traceability

Recovery
(Heindl and Biffl 2005) A Case Study on Value-based Requirements Tracing
(Jarke 1998) Requirements Tracing
(Jirapanthong and Zisman 2007) XTraQue: Traceability for Product Line Systems
(Kececi et al. 2006) Modeling Functional Requirements to Support Traceability Analysis
(Kelleher 2005) A Reusable Traceability Framework using Patterns
(Lormans and van Deursen 2005) Reconstructing Requirements Coverage Views from Design and Test Using Traceability Recovery via

LSI
(Marcus et al. 2005) Recovery of Traceability Links between Software Documentation and Source Code
(Naslavsky et al. 2005) Using Scenarios to Support Traceability
(Noll and Ribeiro 2007) Enhancing Traceability Using Ontologies
(Ozkaya and Akin 2007) Tool Support for Computer-Aided requirements traceability in Architectural Design: The Case of De-

signTrack
(Pohl et al. 1997) Towards Method-Driven Trace Capture
(do Prado Leite and Breitman 2003) Experiences Using Scenarios to Enhance Traceability
(Ramesh 1998) Factors Influencing Requirements Traceability Practice
(Ramesh et al. 1997) Requirements Traceability: Theory and Practice
(Ramesh and Jarke 2001) Toward Reference Models for Requirements Traceability
(Ravichandar et al. 2007) Pre-Requirement Specification Traceability: Bridging the Complexity Gap through Capabilities
(Rochimah et al. 2007) An Evaluation of Traceability Approaches to Support Software Evolution
(Salem 2006) Improving Software Quality through Requirements Traceability Models
(Sherba and Anderson 2003) A Framework for Managing Traceability Relationships between Requirements and Architectures
(Shin et al. 2005) Scenario Advisor Tool for Requirements Engineering
(Spanoudakis et al. 2004) Rule-based Generation of Requirements Traceability Relations
(Streitferdt 2001) Traceability for System Families
(Tvete 1999) Introducing Efficient Requirements Management
(Verhanneman et al. 2005) Requirements Traceability to Support Evolution of Access Control
(Yadla et al. 2005) Tracing Requirements to Defect Reports: An Application of Information Retrieval Techniques

please see Table 1 (obviously, all papers in the rightmost
column are included in Table 2).

Fig. 1 represents the yearly distribution of the pri-
mary studies during the period 1997–2007. It is evident
from the figure that the number of publications on RT
peaked in the year 2005. One of the reasons for this in-
crease in research publications (which can already be
seen before 2005) is the International Workshop on Tra-
ceability in Emerging Forms of Software Engineering held
in 2002, 2003, 2005 and 2007 (TEFSE’07 is not part
of this search since the publications had not been pub-
lished electronically when the study was executed). At

this workshop only research papers related to traceabil-
ity were presented and later published electronically.

3 Results from and analysis of the systematic
review

3.1 Definitions of requirements traceability (Question 1)

In (Gotel and Finkelstein 1997) RT is defined as, “the
ability to describe and follow the life of a requirement, in
both a forward and backward direction (i.e. from its ori-
gin, through its development and specification, to its sub-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007

Fig. 1 Year-wise distribution of primary studies on requir-
ements traceability during 1997–2007.

sequent deployment and use, and through periods of on-
going refinement and iteration in any of these phases).”
This definition is further used by e.g. (Bashir and Qadir
2006; Bouquet et al. 2005; Bubl and Balser 2005; Dick
2005; Egyed and Grünbacher 2002; Heindl and Biffl 2005;
Jarke 1998; do Prado Leite and Breitman 2003; Ramesh
and Jarke 2001; Ramesh et al. 1997; Ravichandar et al.
2007; Rochimah et al. 2007; Verhanneman et al. 2005).
The definition seems to be more precise and comprehen-
sive compared to other definitions reported in literature.
It describes both pre- and post-RS traceability.

The IEEE Std. 830–1998 defines traceability as, “a
software requirements specification is traceable if (i) the
origin of each of its requirements is clear and if (ii) it
facilitates the referencing of each requirement in future
development or enhancement documentation” (IEEE So-
ciety 1998). This definition covers both pre-RS traceab-
ility and post-RS traceability.

The U.S. Department of Defense Standard 2167A
(Dept. of Defence, US 1988) defines traceability as, “that
the document in question is in agreement with a pre-
decessor document to which it has a hierarchical rela-
tionship.” Additionally, traceability has five elements,
according to DOD-STD-2167A:

– The document in question contains or implements all
applicable stipulations of the predecessor document,

– A given term, acronym, or abbreviation means the
same thing in all documents,

– A given item or concept is referred to by the same
name or description in the documents,

– All material in the successor document has its basis
in the predecessor document, that is, no untraceable
material has been introduced, and

– The two documents do not contradict one another.

This definition provides a solid base for researchers
to understand and interpret RT, however, the definition
does not make a clear distinction between pre- and post-
RS raceability.

Table 4 Scope of different definitions as found in the pri-
mary studies.

Definition Scope of definition
Gotel & Finkelstein Pre- and post-RS traceability
IEEE Std. 830–1998 Pre- and post-RS traceability
DOD-STD-2167A Pre- and post-RS traceability
Hamilton & Beeby Pre- and post-RS traceability
Ramesh & Jarke Post-RS Traceability
Edward & Howell Post-RS traceability
Spanoudakis Post-RS Traceability
Murray Post-RS Traceability
Ramesh Post-RS Traceability

Edwards and Howell define RT as, “a technique used
to provide a relationship between the requirements, the
design and the final implementation of the system.” This
definition reflects the traces from requirement to other
artifacts, which means that it focuses on post-RS trace-
ability, but on the other hand ignores pre-RS traceability
(Edwards and Howell 1991).

In (Bailin et al. 1997), the authors define traceability
as providing an “essential assistance in understanding
the relationship that exists within and across software
requirements, design and implementation.” This defini-
tion is similar to the previous definition by Edwards and
Howell, i.e. it focuses only on post-RS traceability.

Hamilton and Beeby define traceability as, “the abil-
ity to discover the history of every feature of a system so
that the changes in the requirements can be identified.”
This definition covers both pre- and post-RS traceability
(Hamilton and Beeby 1991).

In (Ramesh and Jarke 2001) and (Spanoudakis et al.
2004) the authors once again focus on post-RS traceabil-
ity only. The latter, define traceability as “the ability to
relate requirements specifications with other artifact cre-
ated in the development life-cycle of a software system.”
The former, define traceability as a “property of a system
description technique that allows changes in one of the
three system descriptions—requirements, specifications,
and implementation—to be traced to the corresponding
portions of the other descriptions.”

3.1.1 Analysis of definitions

The primary studies containing definitions on RT gath-
ered by the systematic review are presented in Table 3. In
order to perform an analysis of RT definitions we add two
parameters ‘scope of definition’ as a column in Table 4.
The column ‘scope of definition’ provides the aspect of
traceability i.e. pre-RS traceability and/or post-RS tra-
ceability.

Hence, the conclusion drawn from Table 4 is that RT
is fully defined when both aspects of pre- and post-RS
traceability are covered, and that the definitions from
Gotel and Finkelstein, Hamilton and Beeby, DOD-STD-
2167A and IEEE Std. 830–1998 accomplish this.

It is evident from Table 3 that Gotel and Finkelstein’s
definition of RT is dominant (more than 80% of the pri-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

Table 3 Primary studies defining or using requirements traceability definitions.

Ref. Definition used
(Arkley and Riddle 2005) Arkley & Riddle
(Bashir and Qadir 2006) Spanoudakis, Murray, Ramesh, Gotel & Finkelstein and IEEE Std. 830–1998
(Bouquet et al. 2005) Gotel & Finkelstein
(Bubl and Balser 2005) Gotel & Finkelstein
(Cleland-Huang et al. 2002a) Gotel & Finkelstein
(Cleland-Huang et al. 2003b) IEEE Std. 830–1998
(Cleland-Huang et al. 2005a) Gotel & Finkelstein
(Cleland-Huang et al. 2007) Gotel & Finkelstein
(Dick 2005) Gotel & Finkelstein
(Egyed and Grünbacher 2002) Gotel & Finkelstein
(Gotel and Finkelstein 1997) Gotel & Finkelstein
(Heindl and Biffl 2005) Gotel & Finkelstein
(Jarke 1998) Gotel & Finkelstein
(Kececi et al. 2006) DOD-STD-2167A and IEEE Std. 830–1998
(do Prado Leite and Breitman 2003) Gotel & Finkelstein
(Ramesh et al. 1997) IEEE Std. 830–1998 and Gotel & Finkelstein
(Ramesh and Jarke 2001) Gotel & Finkelstein, Edward & Howell and Hamilton & Beeby
(Ravichandar et al. 2007) Gotel & Finkelstein
(Rochimah et al. 2007) Gotel & Finkelstein
(Spanoudakis et al. 2004) Ramesh & Jarke
(Verhanneman et al. 2005) Gotel & Finkelstein

mary studies, which defined requirements traceability,
used this definition).

3.2 Challenges in requirements traceability (Question 2)

In this subsection challenges in requirements traceability
will be covered (as found in the primary studies). Any
techniques or tools discussed will be covered in subse-
quent subsections.

In (Cleland-Huang et al. 2003a), the authors discuss
the results of a survey conducted by Gotel and Finkel-
stein in 1994 (Gotel and Finkelstein 1994). Various trace-
ability problems were identified in this survey, such as in-
formal development methods, insufficient resources, time
and cost for traceability, lack of coordination between
people which were responsible for different traceable ar-
tifacts, lack of training in RT practices, imbalance be-
tween benefits obtained and efforts spent for implement-
ing traceability practices, and failure to follow standards.
Cleland-Huang et al. comment that all of these issues are
intensified by the challenges of today’s distributed de-
velopment environment. In order to solve some of these
challenges they propose a traceability technique called
event-based traceability (EBT). This technique creates
links between software artifacts after a change request is
executed, and, according to the authors, alleviates the
coordination efforts required for maintaining software
artifacts. Cleland-Huang et al. also recommends other
techniques, e.g. information retrieval (IR), when work-
ing with automated RT.

In (Gotel and Morris 2006), the authors describe tra-
ceability problems such as, requirements changed by users,
and availability of less contextual information in decision
making. Gotel and Morris suggests a new dimension in
the field of RT and media to solve these problems. They
propose a theoretical framework which helps to select the
appropriate media for recording requirements-related in-
formation.

In (Arkley and Riddle 2005), the authors claim that
various project managers and team members perceive
that RT does not offer immediate benefit to the develop-
ment process; therefore RT is kept at low priority. They
propose a new technique, traceable development contract
(TDC), to overcome traceability problems. (TDC is used
to control the interaction of development teams and to
document traceability relationships.)

In (Cleland-Huang et al. 2005b), the authors claim
that manual construction and maintenance of a traceab-
ility matrix proves to be costly for various reasons and,
hence, it is a common perception that traceability is not
feasible from a financial point of view. In order to solve
this problem, dynamic retrieval methods are used to au-
tomate the generation of traceability links.

In (Cleland-Huang et al. 2004), the authors present
the problem of link maintenance, i.e. the lack of coor-
dination between team members results in a failure in
maintaining links between artifacts. Most of the time
developers believe that traceability costs more than it
delivers. However, Cleland-Huang et al. point at the fact
that excessive usage of traceability can also lead to confu-
sion and they then present a combination of traceability
techniques in a framework named traceability for com-
plex systems (TraCS). They argue that TraCS helps to
implement RT practices in a cost effective manner and
bring significant value to an organization.

(Gotel and Finkelstein 1997) report the results of an
empirical study related to the problems of RT. They
identify a set of problematic questions such as, ‘Who
identifies or discoveres a requirement and how?’ ‘Who
was responsible for the requirement to start with, and
who is currently responsible?’ ‘Who will take care of
change(s) in requirements?’ ‘What will be the effect on
the project in terms of knowledge loss, if some indi-
vidual or the whole group leave the company?’ Gotel
and Finkelstein then propose a model using contribution
structures to solve these issues. Contribution structures

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

reflect the network of people who participate in produc-
ing artifacts in requirement engineering. This model ex-
tends the artifact-based traceability with traceability of
people involved in requirements engineering. This model
is then successfully implemented in a company as a case
study (Gotel and Finkelstein 1997). The employees of
the company commented that the proposed model iden-
tified the relevant people to rectify the specific problems
regarding changes in requirements. The model has suc-
cessfully been used in decision-making concerning staff
turnover issues.

In (Blaauboer et al. 2007), the authors investigate
how practicioners (project managers) decide on when
and how to adopt RT. They use a literature review com-
bined with Howard’s theory of classical decision making
(Howard and Matheson 1984) to identify relevant factors
for making a decision with respect to traceability. They
then validate the factors in a large case study. The main
conclusions they reach is that “There is little incentive
to use traceability when most of the benefits are out-
side the project” and that there is a lack of awareness.
In addition, they claim that one major obstacle is, “the
way software development projects [are] contracted and
organized.”

In (Tvete 1999), the author presents experiences from
a project related to requirements management improve-
ment (specifically RT). Initially the problems related to
requirements management were identified in the informa-
tion transfer from contract to specification phase as well
as inadequate impact analysis of requirement changes.
In this regard three requirements management tools, i.e.
DOORS, RTM and RequisitePro were evaluated and, ul-
timately, DOORS was recommended for solving traceab-
ility issues. (Requirements traceability tools are further
covered in Section 3.3)

In (Ramesh 1998), the author identifies environmen-
tal, organizational and technical factors influencing the
implementation of RT. The environmental factors in-
clude inability to use available technologies for RT, such
as reluctance to manually construct a requirements tra-
ceability matrix (RTM) by the employees. Organizational
factors include compliance with standards strictly de-
manding RT like CMMI level 3. Technical factors include
ad-hoc practices and staff employed in organizations.
Ramesh proposes tools support, training, and change
in system development policies to overcome these chal-
lenges.

In (Heindl and Biffl 2005), the authors identify costs
associated with traceability as a factor that obstructs its
implementation. The traceability costs significantly in-
creases if a company uses RT tools. The reason for this
increase in cost is that existing traceability techniques
do not differentiate between high and low value requir-
ements (the high value requirements are those that are
more important as compared to other requirements and
vice versa). The authors propose a method called value-
based requirements tracing (VBRT) to solve this cost-

related issue of RT. The VBRT approach identifies high
value requirements based on parameters like: Number of
artifacts, number of traces (links between software ar-
tifacts), and number of requirements. They successfully
implement this approach in an industrial case study.

In (Cleland-Huang 2005; Cleland-Huang et al. 2005a),
the authors identify that organizations fail to trace non-
functional requirements (NFRs) like performance, secu-
rity and usability. This is, according to the authors, due
to the fact that NFRs have a global impact on the soft-
ware system and extensive network of interdependen-
cies and trade-offs exist between them. In order to over-
come these NFR-related traceability issues an approach
called goal-centric traceability (GCT) is proposed. An
industry-based experiment was conducted to verify this
technique. The experimental results indicate that this
approach is successful in managing traceability in NFR.

In (Ravichandar et al. 2007), the authors identify
one major problem when tracing requirements back to
their sources. The system validation testing is performed
against requirements; therefore, there should be a tech-
nique to trace requirements back to their sources. The
authors propose a technique for pre-RS traceability.

3.2.1 Analysis of challenges in requirements traceability

Over time various researchers have reported different
challenges regarding implementing requirements trace-
ability practices. Among these challenges some can be
referred to as commonplace, e.g. cost, time, effort, and
team coordination. In order tackle these challenges, var-
ious solutions have been proposed such as new trace-
ability techniques, frameworks, models, and various au-
tomated traceability tools. The challenges related to RT
and their solutions can be classified into three main types
on the basis of the primary studies in the review:

– Challenges addressed by academia (Table 5).
– Challenges addressed by academia/industry and ver-

ified in industry (Table 6).
– Unsolved issues. Issues which are still unsolved in in-

dustry and academia.

The solutions proposed might not be generic, i.e. suit-
able for all types of companies, however, some general
conclusions can be drawn. First, understanding the chal-
lenges that might arise when realizing and working with
traceability can be seen as a pre-requisite. Second, the
cost and value distribution of RT seems to be off, namely
many of the benefits associated with RT span over and
beyond any single project, while large parts of the costs
associated with establishing and maintaining RT are put
on the project. This could hamper the motivation of a
project to work with RT as the benefit is not seen imme-
diately. This could be an underlying factor that enhances
many of the other challenges identified.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

Table 5 Primary studies reporting challenges related to requirements traceability addressed by academia.

Ref. Issue(s) Proposed solution (not verified in industry)
(Arkley and Riddle 2005) Requirement traceability does not offer immediate benefit

to development process.
Traceable development contract.

(Cleland-Huang et al. 2003a) Informal development methods, Insufficient resources,
Time and cost for traceability, Lack of coordination be-
tween people, Failure to follow standards.

Event-based traceability.

(Cleland-Huang et al. 2004) Lack of coordination between team members. Developers
think that traceability costs more then it delivers. Exces-
sive use of traceability generate more links which are not
easy to manage.

Traceability for Complex Systems (TraCS)
Framework.

(Cleland-Huang et al. 2005b) Manual construction of an RTM is costly. Solved by the use of IR methods.
(Gotel and Morris 2006) Requirements change by user. Less appropriate informa-

tion is available for making decision with requirements.
Media recording framework.

(Ravichandar et al. 2007) Problems associated with tracing back to their sources. Pre-RS requirements traceability technique.

Table 6 Primary studies reporting challenges related to requirements traceability addressed by industry.

Ref. Issue(s) Proposed solution (verified in industry)
(Blaauboer et al. 2007) Adopting RT Increase awareness and adapt organizations to in-

clude RT.
(Cleland-Huang 2005) Failure to trace non-functional requirements e.g. security,

performance and usability.
Goal centric traceability evaluated by an experi-
ment.

(Gotel and Finkelstein 1997) Some problematic questions are identified as challenges:
Who identifies a requirement and how? Who was responsi-
ble for the requirement to start with and who is currently
responsible? Who is responsible for change(s) in requir-
ements? What will be the effect on the project in terms
of knowledge loss if key employers are quit?

Framework of contribution structure.

(Heindl and Biffl 2005) Cost related to RT. VBRT tested through a case study.
(Ramesh 1998) Organizational, environmental and technical factors. Best practices given.
(Tvete 1999) Requirements management challenges in industry

projects e.g. inadequate impact analysis and lack of
information transfer.

Requirements management tools like DOORS
and RequisitePro.

3.3 Requirements traceability tools (Question 3)

This subsection will cover the requirements traceability
tools found in the primary studies. Any traceability tech-
niques discussed in this subsection will be covered in the
following subsection.

RETRO Requirements tracing on-target (RETRO) is
an RT tool facilitating the automatic generation of req-
uirements traceability matrices (RTM). RETRO uses in-
formation retrieval (IR) methods and has a GUI front-
end (Hayes et al. 2005, 2007; Yadla et al. 2005).

Hayes et al. (Hayes et al. 2007) conducted a case
study with thirty graduate-level students in a requirem-
ents engineering course. The subjects in this case study
were divided into two groups. One group was tracing req-
uirements manually using a RTM, while the other group
was using RETRO. Students who had previous expe-
rience of traceability were placed in the former group.
Both groups had to trace twenty-two requirements to
fifty-two design elements. The results of the case study
revealed that the students using RETRO produced the
most accurate result.

Rational RequisitePro Rational RequisitePro is a requir-
ements management tool developed by IBM. It provides
support to save SRS documents and, link requirements
to use-case diagrams and test cases. When change to
requirements occur Rational RequisitePro identifies the
corresponding software artifacts that are affected.

It is currently in use in industry and by researchers,
e.g. (Cleland-Huang et al. 2002a,b, 2003a, 2004, 2007;
Hayes et al. 2003, 2005) have all identified it as a requir-
ements management tool, which also supports traceabil-
ity.

DOORS DOORS, is a requirements management tool
developed by Telelogic (now IBM). It is used to capture,
link, trace, analyze, and manage changes to the requir-
ements. It provides ways to create and traverse links be-
tween requirements (for example a link can be created
by a drag and drop operation). DOORS is also helpful
in change management; it immediately flags the changes
that could impact other requirements. In addition to all
this DOORS also support dynamic report generation.

From 1997 to 2007 several researchers have reported
using DOORS as an automated requirements manage-
ment tool. DOORS has been covered implicitly or ex-
plicitly by several researchers (Arkley and Riddle 2005;
Cleland-Huang et al. 2007, 2003a, 2002a,b, 2004; Hayes
et al. 2003, 2005; Ramesh and Jarke 2001; Tvete 1999).

DesignTrack According to (Ozkaya and Akin 2007), De-
signTrack is a prototype tool supporting RT. It provides
traceability between requirements and architectural de-
sign. DesignTrack helps organizations by providing an
integrated environment for requirements modeling and
specification. An architect can use this tool to manage
issues of design requirements and other design tasks.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

The primary goals of DesignTrack is to: (i) Provide an
integrated environment for designers to manage requir-
ements information along with exploration. (ii) Facilitate
the designers to reuse previous requirement information.
(iii) Permit designers to track changes as they go through
requirements specifications or from explorative tasks.

TRAM TRAM, or tool for requirements and architec-
tural management, is a tool for managing system ar-
chitecture, system requirements and the traceability be-
tween them. This tool is based on an information model
identifying the relationship between requirements engi-
neering and architectural design.

According to (Han 2001), TRAM has been used in
case studies indicating positive results, however, these
positive results are not explicitly discussed.

Scenario Advisor Tool In software engineering, scenarios
can be used to model system functionality. Scenarios act
as mediators between requirements engineers and soft-
ware artifacts like specifications and design documents.
The scenario advisor tool provides traceability support
between scenario models and requirements. It also facili-
tates in generating new scenarios and scenario variations
(Shin et al. 2005).

In (Shin et al. 2005), an empirical study is reported
where the authors try to determine the usefulness of the
scenario advisor tool in scenario-based traceability. An
experiment was conducted with two groups. One group
used the scenario advisor tool, while another did not use
tool support. The subjects of the group without tool
support were eight postgraduate students and two re-
searchers. In the group using the scenario advisor tool
the subjects were nine postgraduate students and one
researcher. The members of both groups had no previ-
ous experience in traceability using scenarios. The results
of this experiment indicated that the scenario advisor
tool helped users to write scenarios without any domain
knowledge, i.e. users can write better scenarios and can
trace requirements to scenario models. In the debriefing
interviews some users reported that the tool could be
improved if it provided a scenario template or a step-by-
step procedure to write good scenarios.

Other traceability tools The RT tools listed in Table 7
were not sufficiently described by the contributions found
in the systematic review. Neither detailed information
regarding how they worked nor any empirical evidence
related to them was reported by literature.

3.3.1 Analysis concerning requirements traceability tools

Requirements traceability tools help in maintaining tra-
ceability by e.g. automatically generating links between
various software artifacts and requirements. DOORS and
Rational RequisitePro are widely used requirements man-
agement tools which also provide traceability support.

Table 7 Primary studies reporting on traceability tools lack-
ing empirical evidence or sufficient description. The tool (sec-
ond column) was introduced in the article(s) found in the first
column.

Reference Tool
(Cleland-Huang et al. 2003a;
Ramesh and Jarke 2001)

SLATE

(Cleland-Huang et al. 2003a) CRADLE
(Hayes et al. 2003, 2005; Ramesh
and Jarke 2001)

RDD-100

(Ramesh and Jarke 2001) Marconi RTM
(Ramesh and Jarke 2001) RTS
(Ramesh and Jarke 2001) Rtrace
(Ramesh and Jarke 2001) Teamwork/RQT

Tools like DesignTrack and TRAM provide traceabil-
ity between requirements and architecture. On the other
hand Scenario Advisor Tool provides traceability sup-
port between requirements and scenarios and RETRO is
a ‘pure’ traceability tool facilitating automatic genera-
tion of RTM.

The results of the systematic review reveal that all
of the above traceability tools except DesignTrack have
been evaluated empirically. Furthermore, it seems that
requirements management tools are widely used instead
of tools focusing exclusively on traceability support. Ta-
ble 8 provides a comparison of the RT tools found in the
systematic review (containing a sufficent description or
providing empirical evidence).

Based on the results of the systematic review, the RT
tools can be classified into three categories:

First, requirements management tools providing tra-
ceability support. This category includes tools that are
developed to facilitate requirements management activi-
ties in general. Traceability is a part of the requirements
management process and, hence, these tools also sup-
port traceability. This category includes tools like Ra-
tional RequisitePro, DOORS, DesignTrack and the Sce-
nario Advisor Tool.

Second, requirements traceability tools. This cate-
gory includes tools that are used exclusively for man-
aging RT, e.g. tools like RETRO and TRAM.

Third, other requirements management and traceab-
ility tools. This category includes those tools that are
only reported casually by the systematic review articles,
i.e. the articles gathered by the systematic review do
not describe details regarding the tool nor empirical ev-
idence regarding their use. This category includes tools
as listed in Table 7. It is worth noticing that eight out of
a total of thirteen tools covered in the review were lack-
ing any actual validation, either in industry or in a lab
environment (Gorschek et al. 2006). We are not able to
positively draw the conclusion that no validation exists
as it could be covered publication not included in this
review. Although the fact that more than 60% of the
tools found have no validation in the associated publica-
tions might be an indication of inadequate validation, in
which case the usability and usefulness of the tools have
not be tested.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

Table 8 Comparison of found requirements traceability tools sufficently described or providing empirical evidence.

Ref. Tool Description Type Empirical evidence
(Arkley and Riddle 2005;
Cleland-Huang et al. 2007,
2003a, 2002a, 2004) (Dekht-
yar et al. 2006; Hayes et al.
2003; Ramesh and Jarke
2001; Tvete 1999)

DOORS It is used to capture,
link, trace, and manage
changes to requirements.

Requirements manage-
ment tool that supports
traceability.

Currently used in indus-
try.

(Cleland-Huang et al. 2007,
2003a, 2002a,b) (Cleland-
Huang et al. 2004; Dekhtyar
et al. 2006; Hayes et al. 2003)

Rational RequisitePro Provides support to link
requirements to use-case
diagrams, test cases and
save SRS in its database.

Requirements manage-
ment tool providing
traceability support.

Currently used in indus-
try.

(Han 2001) TRAM Managing system archi-
tecture and system req-
uirements.

It supports traceability
between them.

Case studies

(Hayes et al. 2005, 2007;
Yadla et al. 2005)

RETRO Facilitate automatic
generation of RTM.

Traceability tool. Case study (Hayes et al.
2007).

(Ozkaya and Akin 2007) DesignTrack Traceability between
requirements and archi-
tectural design.

Requirements manage-
ment tool supporting
RT.

No Empirical Evidence,
however sufficiently de-
scribed.

(Shin et al. 2005) Scenario Advisor Tool Traceability between
scenario models and
requirements.

Helps in writing scenar-
ios but supports trace-
ability.

Experiment.

3.4 Requirements traceability techniques

This subsection covers the requirements traceability tech-
niques found in the primary studies of the systematic
review.

Value-based requirements tracing Many existing tracing
approaches make no distinction between requirements
that are very valuable to trace and requirements that are
less valuable to trace. This increases the efforts related
to RT and therefore seems more costly to implement in
practice (Heindl and Biffl 2005). The tracing value de-
pends on several parameters like stakeholder importance,
risk or volatility of requirement and the necessary trac-
ing cost. The value-based requirements tracing (VBRT)
technique takes these parameters into consideration.

Ramesh (Ramesh 1998) identify two types of trace-
ability users namely low-end and high-end traceability
users. The low-end traceability users capture traceabil-
ity information uniformly for all requirements, therefore,
in many cases, they also treat traceability as expensive.
On the other hand high-end traceability users recognize
that all requirements are not equal with respect to their
criticality or significance. Therefore, they maintain tra-
ceability for critical project requirements to keep cost
under control but still achieve some traceability bene-
fits.

The goal of VBRT is to identify traces or traceability
links based on prioritized requirements. The identifica-
tion of traces early in the project life-cycle is easier than
in the later stages. VBRT reduces the traceability efforts
for the prioritized requirements according to (Heindl and
Biffl 2005). The VBRT process consists of five steps as
described below (Heindl and Biffl 2005) and illustrated
in Fig. 2.

During the requirements definition the project man-
ager or requirements engineer analyzes the software req-
uirements specification to identify atomic (single irre-

Fig. 2 Overview of the value-based requirements traceabil-
ity process. The dashed arrows indicate an explicit or implicit
connection between the activities. The actor ‘Project man-
ager’ can be substituted in some cases by e.g. a requirements
engineer.

ducible) requirements. A unique identifier is assigned to
each requirement by the requirements engineer. The re-
sult of the requirements definition step is a set of requir-
ements and their IDs.

In the requirements prioritization phase all stake-
holders assess the requirements based on three param-
eters, i.e. the value, the risk and the effort of each re-
quirement. The result of this phase is an ordered list of
prioritized requirements based on the three priority lev-
els.

The packaging of requirements is optional and allows
a group of architects to identify clusters of requirements.
These clusters of requirements help to develop and refine
an architecture from a given set of requirements.

During the linking of artifacts the team identifies tra-
ceability links between requirements and artifacts. Im-
portant requirements are traced in more detail than other

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

requirements. These important requirements can be iden-
tified from the list of prioritized requirements based on
three levels developed in the requirements prioritization
step. A traceability plan is the by-product of this phase.

Finally, during the evaluation phase, a project man-
ager can use traces for various purpose such as to esti-
mate the impact of a change.

Heindl and Biffl (Heindl and Biffl 2005) conducted a
case study using VBRT at Siemens, Austria. The project
‘Public Transport on Demand’ consisted of 46 requir-
ements that were selected to compare full tracing and
VBRT.

The results of the case study was:

1. Focusing on the most important requirements reduced
efforts as compared to tracing all requirement. The
high effort spent in requirements tracing is the factor
due to which projects do not implement traceability.
The effort can be reduced using VBRT, which took
35% less effort compared to full tracing.

2. It is easier to capture traceability information in ear-
lier phases of the software development life-cycle as
compared to capturing traceability in later stages.
(For example if no traceability information is main-
tained during the project.)

3. The prioritization step of VBRT identifies the most
‘valuable’ requirements that are needed to be traced
in more detail.

Feature-oriented requirements tracebility Artifacts, like
software requirements specification, design documents,
source code and test cases, are produced during software
development. When a change request (CR) occurs at any
stage during the software development life-cycle, it might
be difficult to discover the software artifacts affected by
the CR. Additionally, it may be difficult for software
engineers to construct and manage traceability links in
general. The approach of the feature-oriented requirem-
ents tracing (FORT) technique aims at reducing the dif-
ficulty in managing traceability links by identifying them
through prioritized requirements and by constantly con-
sidering cost and efforts (Ahn and Chong 2006).

In order to understand the concept of FORT some
terms need to be introduced as given below (Ahn and
Chong 2006):

– Features are the key characteristics of the product.
These features can be classified on the basis of ca-
pabilities, domain technologies, implementation tech-
nologies and operating environments.

– The process of identifying features and then organiz-
ing them in a model called a feature model.

– The user visible characteristics that can be identi-
fied as operations, nonfunctional characteristics and
distinct services.

– The domain technologies represent the way of imple-
menting a service or an operation.

Table 9 Priority levels and classification of artifacts.

Level Granularity Classification of artifacts
1 Low Components
2 Medium Class
3 High Methods

– Generic functions or techniques that are used to im-
plement domain functions, services, and operations
are called implementation techniques.

– The environments in which the applications are in
use are called operating environments.

– There are three types of relationships in feature mod-
eling. The ‘composed-of relationship’ is used when
there is a whole-part relationship between a feature
and its sub-features. In ‘generalization/specialization
relationship’ features are the generalizations of sub-
features. Where as ‘implemented-by relationship’ is
used when one feature is necessary to implement the
other feature.

The FORT process then consists of five phases (Ahn
and Chong 2006):

First, requirements definition which in its turn con-
sists of three activities: Analyzing requirements specifi-
cation, identifying atomic requirements and assigning an
identifier to each requirement. The aim of the requirem-
ents definition phase is to normalize user requirements
to map them to various artifacts. In order to achieve
this the requirements specification is analyzed and at-
omic requirements are identified. A unique identifier is
then associated with each requirement. The result of this
phase is a list of requirements with identifiers.

Next, feature modeling which consists of three ac-
tivities: Identifying categories and features, organizing
feature diagrams and assigning requirements related to
features. According to (Ahn and Chong 2006), feature
diagrams are developed by identifying the categories in
the target system and features in each category. At this
stage relationships between features are also taken into
consideration. Finally all requirements are assigned to
each feature. The result of this phase is a feature dia-
gram and a list of features.

Third, is feature prioritization, which consists of two
activities: Estimating values of requirements and order-
ing a list of features. In the feature prioritization phase
stakeholders estimate the requirements based on value,
risk and effort for each requirement. Next, the features
are prioritized. (FORT provides a scale for feature priori-
tization as shown in the Table 9 (Ahn and Chong 2006).)

Fourth, there is the requirements linking phase. This
phase consists of three activities assigning artifacts to
related feature, breaking down implementation elements
in different levels and establishing RT links. In requir-
ements linking, RT links are generated and all artifacts
are assigned to the related features. Then, implemen-
tation items are broken down by granularity levels and
traceability links are established. These traceability links
are actually the relationships among requirements, fea-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

Table 10 Results of case study on car rental system. No. of
traceability links (TL) corresponds to TL = l∗m∗n, where l
is the number of components, m is the number of classes and
n is the number of methods. Efforts of generating traceability
links (ETL) is ETL = l[∗m, [∗n]]/TR ∗ 100.

Granularity TL ETL
Low 9 4
Medium 49 28
High 152 100

Table 11 Comparison between value-based and feature-
oriented requirements traceability.

Criteria VBRT FORT
Well-defined process Partial support Supports
Value-added tracing Supports Supports
Feature modeling No support Supports
Variability consideration No support Supports
Efforts reduction High High
Tool support Yes No
Empirical evidence Case study Case Study

tures and artifacts. Similarly important requirements are
traced in more detail compared to less important requir-
ements. This phase results in a list of traceability links.

Finally, we have the traceability links evaluation phase
that consists of two activities: Actual usage of traceab-
ility links in during development and refinement of tra-
ceability links. In short, traceability links are used for
conflict analysis, change impact analysis and consistency
checking in during development. Based on this evalua-
tion, the traceability links can be changed, removed or
added.

The authors in (Ahn and Chong 2006) provide em-
prirical evidence related to FORT. Feature-oriented req-
uirements tracing was applied in a case study to a car
rental system containing 9 components, 49 classes and
152 methods. The results of this case study are seen in
Table 10.

The case study’s result indicate that FORT reduces
efforts for generating traceability links with 24–72% (Ahn
and Chong 2006).

In short, FORT provides variability information by
the use of feature modeling. This variability is helpful to
estimate the impact of requirements change. FORT also
reduces the efforts to create traceability links by prior-
itizing the features and, additionally, provides a tight
relationship between requirements and artifacts by the
help of an intermediate catalyst.

We have made a table between value-based and feature-
oriented requirements tracing so as to clearly see the dif-
ferences, Table 11 (Ahn and Chong 2006), since the two
techniques are fairly similar to each other at first glance.

Pre-RS requirements traceability In pre-RS tracing, req-
uirements are traced back to their source. These sources
are basically the user needs that, in most cases, corre-
sponds to unstructured information. Requirements en-
gineers use interviews, questionnaires or prototyping to
gather user needs during the process of requirements

elicitation. These needs are then documented as req-
uirements in an SRS. Traceability between requirements
and their sources is one of the biggest challenges faced
by the research community according to (Ravichandar
et al. 2007). In system validation the system is validated
against the requirements and in the case of a test failing
it might be necessary to trace a requirement back to its
sources.

The approach of pre-RS traceability, as explained in
(Ravichandar et al. 2007), is based on capabilities engi-
neering. Capabilities engineering is a process for develop-
ing change-tolerant systems by using functional abstrac-
tions known as capabilities.

The capabilities engineering process is based on three
phases:

First, the problem space that represents the concep-
tual region which is associated with the problem domain
(Ravichandar et al. 2007). There are two important en-
tities in the problem space: Needs and directives. The
needs represent the user’s view of the system. The needs
specify what is desired of the system from user’s perspec-
tive, expressed in the language of the problem domain.
Directives are the detailed characteristics of the system
or requirements with context information. There are two
purposes of directives in the problem space. The first is to
capture domain information and the second to facilitate
progress from problem space to transition space. In the
problem domain needs are decomposed into directives.
Decomposition is achieved with the help of functional de-
composition (FD) graphs and is a directed acyclic graph
represented as G = (V,E), where V is the vertex and E
is the edge. The FD graph’s root represents the overall
mission of the system and edges represent the directives.
The internal nodes between root and leaves are the func-
tional abstractions. The FD graph provides traceability
links between needs and directives.

Second, we have the transition space which, accord-
ing to (Ravichandar et al. 2007), is defined as a col-
lective aggregation of the system view, capabilities and
problem domain. The two main entities in the transi-
tion space are initial and optimized capabilities. For-
mulation and optimization are two capabilities engineer-
ing activities in transition space. The initial capabilities
are the functional abstractions with high cohesion and
low coupling whereas the optimized capabilities are the
constraints of technology feasibility and implementation
schedules. The formulation activity identifies initial ca-
pabilities from all possible abstractions present in the FD
graph. These initial capabilities show high cohesion and
low coupling. Cohesion represents the togetherness of el-
ements within the entity and coupling is the interdepen-
dences between elements. The aim of the optimization
activity is to identify the set which best accommodates
the constraints of schedule and technology. The initial
capabilities are the input for optimization activities.

Finally, there is the solution space that represents
the technical area relevant to the system being devel-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

oped. The important entity in the solution space is the
requirement. In the solution space a requirement repre-
sents users’ expectations from the system and is subject
to quality constraints, e.g. testability, verifiability, accu-
racy, and un-ambiguity (Ravichandar et al. 2007). The
input to the solution space is the optimized set of capa-
bilities with their directives that are then transformed
into requirements. In capabilities engineering based pre-
RS traceability, only directives associated with the ca-
pabilities chosen for development are transformed into
requirements. The relevance value can be used to deter-
mine critical requirements while transforming directives
to requirements and represents the importance of a di-
rective in achieving the objective of its parent node. For
instance, a directive with relevance 1 is mission critical
and therefore the requirements associated with this di-
rective are also mission critical.

Table 12 provides a summary of the pre-RS traceab-
ility process using the capabilities engineering approach.
In (Ravichandar et al. 2007) the authors do not provide
any empirical evidence regarding the success of this ap-
proach, however they claim that this approach is very
useful in RT.

Event-based traceability The event-based traceability ap-
proach (EBT) was proposed by Cleland-Huang et al. in
(Cleland-Huang et al. 2002b, 2003a). The main reason
for developing EBT was to provide maintenance of tra-
ceability relationships. Cleland-Huang et al. define tra-
ceability relationships as publisher-subscriber relation-
ship. In this relationship, dependent objects, i.e. arti-
facts, have to subscribe to their respective requirements
on which they are dependent. Whenever a requirement
change occurs, an event message is published, which is
then notified to all dependent objects.

According to (Cleland-Huang et al. 2002a), there are
three main components which participate in the whole
process, requirements manager, event server and sub-
scriber manager. The requirements manager manages
the requirements and publishes the event messages to
the event server, whenever a change request occurs. The
event server is responsible for three main activities: (i)
It handles subscriptions from dependent objects. (ii) It
is responsible for listening to event messages received
from the requirements manager. (iii) It publishes or for-
wards event messages to the relevant subscribers. The
subscriber manager is responsible for listening to the
event server and for receiving and managing the event
notifications.

Event-based traceability handles functional requir-
ements and non-functional requirements, and it provides
a solution to the traceability update problem. Addition-
ally, it can be used in combination with requirements
management tools like DOORS and Rational Requisite-
Pro according to (Cleland-Huang et al. 2003a).

Information retrieval The information retrieval (Cleland-
Huang et al. 2005a; Hayes et al. 2003; Cleland-Huang
et al. 2005b) approach (IR) is used to automate the gen-
eration of traceability links. Commonly used IR methods
include: Vector space model (VSM), different probabilis-
tic models and latent semantic indexing (LSI) (Marcus
et al. 2005). Information retrieval methods are based on
similarity comparison and probabilistic values of two ar-
tifacts.

According to (Rochimah et al. 2007) IR methods in-
clude three general steps: (i) Pre-processing. (ii) Analyz-
ing, indexing, creating its representation and archiving.
(iii) Analyzing incoming artifacts using some ranking al-
gorithms.

Whenever a pair of artifacts reach a specific rank, it
is considered as a candidate link that must be reported
to the analyst for a final decision, i.e. the analyst differ-
entiates between true and false links. IR methods signifi-
cantly reduce the effort required for creating traceability
links between artifacts but, on the other hand, it still
requires significant efforts by the analyst.

IR methods like VSM and LSI are used in the RT tool
RETRO (de Lucia et al. 2007; Hayes et al. 2005). Re-
search on IR methods has focused on tracing functional
requirements, however there is one exception where the
authors in (Cleland-Huang 2005) used IR methods in
goal-centric traceability for tracing non-functional req-
uirements (this is covered later in this section).

Rule-based approach The basic purpose of the rule-based
(RB) approach is to automatically generate traceability
links using rules (Spanoudakis et al. 2004). There are
two traceability rules, i.e. requirement-to-object-model
traceability (RTOM) rule and inter-requirements trace-
ability (IREQ) rule.

These rules are used for three specific documents:
Requirements statement document (RSD), use case doc-
uments (UCD), and the analysis object model (AOM).
RSD and UCD are traced to an AOM by using RTOM
rules. IREQ rules are used for tracing between RSD and
UCD. The RB approach presents all of the documents
and both of the rules in an XML-based format. The
RB approach consists of four steps: Grammatical tag-
ging of the artifacts, converting the tagged artifacts into
XML representations, generating traceability relations
between artifacts, and generating traceability relations
between different parts of the artifacts.

Feature-model based approach The feature-model based
(FB) approach is described in (Riebisch and Hubner 2005).
In feature modeling, requirements are described as over-
views and models as a variability of the product line. A
feature model consists of graphs along with nodes and
edges, while nodes are the features and edges are the
features relations. Each feature represents a property of
the product from a customer’s point of view. There are

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

Table 12 Pre-RS traceability using the capabilities engineering (CE) approach.

CE phase Entities CE activity Input View
Problem space Needs, directives Decomposition User needs User
Transition space Initial and optimized ca-

pabilities
Formulation,
optimization

FD graph System

Solution space Finalized capabilities
(requirements)

Transformation Optimized capabilities System

three types of features: Functional features, interface fea-
tures, and parameter features. Feature relations can be
classified into three categories: Hierarchical relations; in
this case most important feature is placed at a high po-
sition in the hierarchy. Refinement relations, which are
used to define the relations of generalization, specializa-
tion and aggregation. Exclude relations, which define the
constraints between variable features which can influence
the sequence of the decision of the product.

Scenario-based approach According to the proposal by
(Cleland-Huang 2005; Rochimah et al. 2007) scenarios
are used to model system functionality and to gener-
ate functional test cases. Scenario-based test cases cre-
ate a mapping between requirements and other artifacts
like design and code. The traceability is established by
mapping scenarios with the design elements. Scenarios
are created to trace only the interesting cases therefore
they might not provide complete coverage. However, sce-
narios are frequently used by several architectural as-
sessment methods like the architectural trade-off assess-
ment method and the software architecture assessment
method.

Process centered engineering environments In (Pohl et al.
1997), the authors describe a traceability technique, i.e.
process centered engineering environment (PCEE). The
technique is used for tracing non-functional requirem-
ents. A PCEE is composed of three domains: Modeling,
enactment and performance. Processes and traceability
tasks are defined in modeling domain. The software en-
gineering process and related traceability tasks are con-
trolled by the enactment domain. These software engi-
neering and traceability tasks are implemented in the
performance domain.

The process centered engineering environments can
be used to trace both functional and non-functional req-
uirements (Cleland-Huang 2005; Pohl et al. 1997). Non-
functional requirements can be traced by connecting them
with architectural assessment methods in the enactment
domain.

Design patterns In (Gross and Yu 2001), the authors
propose a technique using design patterns for tracing
non-functional requirements. The technique was utilized
by (Cleland-Huang 2005) in a model to depict traceabil-
ity links between a softgoal interdependency graph and
underlying object-oriented design. This model is based
on the application of pattern detection algorithms within

a subset of high-level explicitly traced classes. The tech-
nique supports traceability of any non-functional require-
ment that can be implemented as a design pattern.

Traceability matrices Traceability matrices are often used
in industry to define relationships between requirements
and other artifacts (Cleland-Huang 2005), e.g. design
modules, code modules and test cases. By using traceab-
ility matrices the links, between requirements and other
artifacts, are often manually created. Traceability ma-
trices suffer from scalability and maintenance problems
according to (Cleland-Huang 2005).

Keywords and ontology In (Cleland-Huang 2005), a tech-
nique is described named ‘keywords and ontology’, which
is based on language extended lexicon (Cysneiros and do
Prado Leite 2004).

Keywords and ontology provides traceability support
between UML diagrams and non-functional requirements
modelled in the form of goal tree. Keyword representing
both domain and non-functional requirements, are em-
bedded in a goal tree and UML diagrams. This approach
requires maintenance and systematic use of keywords
throughout the evolution of system; therefore there is
no need to maintain a central traceability matrix.

Aspect weaving Aspect oriented programming (AOP) es-
tablishes traceability between aspects (lower level NFR)
and code. According to (Cleland-Huang 2005) in AOP
suitable concerns are modelled as aspects. In these as-
pects dispersed functionality is encapsulated into a sin-
gle entity. This single entity is woven into the code with
the help of a special complier based on the set of aspect
weaving rules.

Concerns can be categorized as functional and non-
functional (Cleland-Huang 2005). The non-functional con-
cerns include high level NFR such as maintainability,
performance and security. Non-functional concerns are
less concrete to be implemented as aspects. Functional
concerns are more concrete concerns because their be-
havior is easily definable and they can be expressed in
terms of aspect weaving rules. The functional concerns
include requirements like e.g. logging and authentication.

Goal-centric traceability The traceability of NFRs (non-
functional requirements) is difficult. This is due to the
fact that extensive interdependencies and trade-offs ex-
ist between them. In (Cleland-Huang et al. 2005a), the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16

authors propose a technique called goal-centric traceab-
ility (GCT) to trace non-functional requirements. This
technique has been successfully evaluated in a case study
on a real world project.

In GCT a softgoal interdependency graph (SIG) is
used to model NFRs as goals and operationalizations
(Cleland-Huang et al. 2005a). The SIG is a framework
which helps developers to model NFR during software
development. In a SIG goals are the NFRs to be satisfied,
whereas operationalizations are development, design or
implementation techniques that help in satisfying NFRs
(Chung et al. 1999).

GCT has four distinct phases (Cleland-Huang et al.
2005a): Goal modeling, impact detection, goal analysis
and decision making. These phases are briefly explained
below.

Goal modeling occurs during elicitation, specification
and architectural design of the system. Goal modeling is
sub-divided into two phases, developing a SIG and main-
taining SIGs. When developing a SIG, the non-functional
goals are modelled as softgoals, which are decomposed
into operationalizations and then negotiated and agreed
with the stakeholders. During the maintainance phase a
SIG is maintained throughout the life of software system
to accommodate the impact of change. Traceability links
are established as functional model of the system and set
of potentially impacted SIG elements. One representa-
tion of the functional model can be UML diagrams. The
functional change is usually implemented at code level
or design level.

The ability to understand the impact of change in
UML models help developers to evaluate the impact of
change before implementing it in the code.

The third phase, the goal analysis, is sub-divided into
two sub-phases. During contribution re-analysis the im-
pact of change is propagated throughout the SIG to eval-
uate its effects on system wide goals. While, according to
(Cleland-Huang et al. 2005a), during goal re-evaluation
each operationalization is examined to determine how
the proposed change influences the satisfaction of its par-
ent goal. Any parent goal that no longer satisfied is also
re-evaluated to determine how it impacts its own parent.
This process is continued until all potential goals have
been re-evaluated. The output of this phase is an impact
analysis report that identifies all goals that are either
positively or negatively affected by the proposed change.

Finally, the decision making phase is sub-divided into
two sub-phases: Decision and impact evaluation. During
the decision sub-phase stakeholders examine the impact
report to decide whether to proceed with the proposed
change or not. In the impact evaluation sub-phase stake-
holders evaluate the impact of the proposed change upon
NFR goals and identify risk mitigation strategies.

Concerning empirical evidence, the authors in (Cleland-
Huang et al. 2005a) report on an experimental evaluation
of GCT in the ‘Ice Breaker System’. The system manages
de-icing services to prevent ice formation on roads. This

system receives information from weather stations and
road servers. This system consists of 180 functional req-
uirements and nine NFR related to accuracy, availability,
safety, usability, security, extensibility, completeness and
cost.

The results of the case study reveal that GCT pro-
vides support to developers to manage the impact of
functional changes on non-functional requirements. The
use of a probabilistic retrieval algorithm reduces tracing
efforts in link retrieval. The probabilistic retrieval algo-
rithm dynamically retrieves traceability links for NFRs.

3.4.1 Analysis of requirements traceability techniques

On the basis of extracted information we classify RT
techniques on the rationale of requirements type (func-
tional, non-functional or both) and traceability aspects.

Value-based and feature-oriented requirements trace-
ability techniques are used to trace functional requirem-
ents. Whereas keywords and ontology, design pattern,
and goal-centric traceability techniques provides trace-
ability for non-functional requirements.

The techniques which provide traceability for both
functional and non-functional requirement are pre-RS
requirements traceability, event-based traceability, infor-
mation retrieval, traceability matrices, process centered
engineering environment, aspect weaving, and scenario-,
hypertext- and rule-based approaches.

Among all these traceability techniques only pre-RS
requirements traceability technique emphasis on pre-RS
traceability aspects, the rest of the techniques focus on
post-RS traceability aspects. The results of this discus-
sion are summarized in Table 13.

It is obvious from Table 13 that 15 techniques were
identified in the systematic review, however it is interest-
ing to note that almost three out of four lack empirical
evidence.

Similarly it can be observed from Table 13 that some
techniques are discussed in more than one paper. In Fig.
3 one can see how often a technique has been ‘published’,
which might indicate how mature a techniques is.

Among the techniques shown in Fig. 3 only informa-
tion retrieval and goal-centric traceability have empiri-
cal evidence; whereas techniques like event-based, rule-
based and scenario-based traceability have no empirical
evidence reported in literature. To be blunt, event-based
traceability is discussed in nine articles and but has no
reported empirical evidence, i.e. experiment, survey or
case study, that is reported in the articles.

In (Cleland-Huang et al. 2003a), ‘M-Net’, a web based
conferencing system with 300 requirements and an initial
set of 250 links, is analyzed. The example was used to
illustrate the concept of event-based traceability. Unfor-
tunately, this example only demonstrated the feasibil-
ity of event-based traceability to solve synchronization
problems related to the updating artifacts and resolving
traceability links. (The authors claim that a long-term

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17

Table 13 Summary of comparision between different traceability techniques. (F and NF, in the fourth column from left,
stands for functional and non-functional, respectively.)

Ref. Technique Aspect Type of req. Empirical evidence
(Ahn and Chong 2006) Feature-oriented requirement tracing Post-RS F Case study
(Cleland-Huang et al. 2004; Cleland-Huang
2005; Rochimah et al. 2007) (Cleland-Huang
et al. 2003b, 2002a; Salem 2006) (Hayes et al.
2003; Cleland-Huang et al. 2003a, 2002b)

Event-based traceability Post-RS F & NF None

(Cleland-Huang 2005) Matrices Post-RS F & NF None
(Cleland-Huang 2005) Keywords & ontology Post-RS NF None
(Cleland-Huang 2005) Aspect weaving Post-RS F & NF None
(Cleland-Huang 2005; Cleland-Huang et al.
2005a)

Goal-centric Post-RS NF Experiment

(Cleland-Huang 2005; Rochimah et al. 2007) Scenario-based Post-RS F & NF None
(Cleland-Huang et al. 2005a; Cleland-Huang
2005; Rochimah et al. 2007) (de Lucia et al. 2007;
Dekhtyar et al. 2006; Hayes et al. 2003) (Cleland-
Huang et al. 2005b; Antoniol et al. 2002)

Information retrieval Post-RS F & NF Case study

(Gross and Yu 2001) Design patterns Post-RS NF None
(Heindl and Biffl 2005) Value-based requirements traceability Post-RS F Case study
(Ravichandar et al. 2007) Pre-RS requirement tracing Pre-RS F & NF None
(Rochimah et al. 2007) Hypertext-based Post-RS F & NF None
(Rochimah et al. 2007) Feature-model based Post-RS F & NF None
(Rochimah et al. 2007; Spanoudakis et al. 2004) Rule-based Post-RS F & NF None
(Pohl et al. 1997) Process centered engineering environment Post-RS F & NF None

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Event-based

Information retrieval

Rule-based

Scenario-based

Goal-centric

Fig. 3 Descriptive statistics showing the number of times
a technique has been ‘published’ according to the primary
studies.

empirical study of event-based traceability is currently
under way.)

In (Cleland-Huang et al. 2004) the authors describe a
framework known as TraCS. It uses event-based traceab-
ility to trace performance related requirements, however
there is no empirical evidence connected to TraCS.

The conclusions drawn from examining the empiri-
cal evidence of RT are reported in Table 14. These con-
clusions could be of interest while selecting a particular
technique for providing solutions in academia or indus-
try or when developing a framework for requirements
traceability.

Based on the systematic review results, the traceab-
ility techniques can be divided into two types:

1. Techniques facilitating pre-RS traceability. This type
includes those traceability techniques which help to
describe the life of requirements when they are not
included in the requirements specification. There is

only one technique in this category, i.e. pre-RS req-
uirements traceability (see Section 3.4).

2. Techniques facilitating post-RS traceability. This type
includes those techniques which help to trace the life
of requirements when they are included in the requir-
ements specification and forward. These techniques
can be further divided into three types based on the
systematic review’s results (see Table 8).
(a) Techniques focusing on tracing functional requir-

ements, i.e. VBRT and FORT.
(b) Techniques focusing on tracing non-functional req-

uirements, i.e. design patterns, keywords and on-
tology, and goal-centric traceability.

(c) Techniques favouring traceability of both func-
tional and non-functional requirements. The tech-
niques included in this category are EBT, IR,
hypertext-, featuremodel- and scenario-based ap-
proach, process centric environment, matrices and
aspect weaving.

4 Answers to questions connected to the
systematic review

In this section the questions presented in the review
protocol (see Section 2.1) are addressed. By answering
these questions the two research questions will also be
answered.

Question 1. What is requirements traceability based
on state-of-the-art research and standards?

The definition of RT based on state-of-the-art re-
search and standards is discussed in Section 3.1. It is ob-
vious from the systematic review results that Gotel and
Finkelstein, Hamilton and Beeby, and IEEE Std. 830–
1998 provide comprehensive and state-of-the art defini-
tions of RT, and that the definition of Gotel and Finkel-
stein is most widely used in literature. Hence according

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18

Table 14 Conclusions drawn from the empirical evidence on traceability techniques.

Ref. Technique Conclusions
(Ahn and Chong 2006) Feature-oriented requirements

tracing (FORT)
1. FORT provides variability information based of feature
modeling which is useful to estimate requirements change.
2. FORT reduces efforts by being based on feature prior-
itization.

(Cleland-Huang 2005; Cleland-Huang et al.
2005a)

Goal-centric traceability (GCT) 1. GCT facilitates to manage impact of functional change
upon the non-functional requirements. 2. GCT helps to
manage critical system qualities such as safety, security,
reliability, usability and performance.

(Cleland-Huang et al. 2005a; Cleland-Huang
2005; Rochimah et al. 2007) (de Lucia et al.
2007; Dekhtyar et al. 2006; Hayes et al. 2003)
(Cleland-Huang et al. 2005b; Antoniol et al.
2002)

Information retrieval (IR) 1. It is very hard to maintain links in constantly evolving
systems. (IR methods facilitate dynamic link generation.)
2. The results of a case study indicate that “IR provides a
practicable solution to the problem of semi-automatically
recovering traceability links between code and documen-
tation.”

(Heindl and Biffl 2005) Value-based requirements trac-
ing (VBRT)

1. The traceability efforts are reduced by focusing on most
important requirements as compared to full tracing. 2. It
is easier to capture traceability related information in ear-
lier phases of software development lifecycle.3. The prior-
itization step of VBRT identifies important requirements
to be traced in more detail than others. 4. In VBRT im-
portant requirements are identified based on parameters
stakeholder value, requirements risk/volatility and trac-
ing costs. 5. Tracing requirements into code at method
level provides more useful and detailed information than
tracing into class level.

to Gotel and Finkelstein’s view, RT is the ability to fol-
low and describe the life of requirements both in forward
and backward direction throughout the development, de-
ployment and refinement cycle.

Question 2. Which are the challenges when imple-
menting requirements traceability and how does research
address these challenges?

The challenges when implementing RT (and possible
solutions) are discussed in Section 3.2.

We have classified these challenges into three cate-
gories: (i) Challenges addressed by academia (Table 5).
(ii) Challenges addressed by industry (Table 6). (iii) Chal-
lenges addressed by neither academia nor industry (as
described in 3.2.1). The general challenges of cost and
value of RT, i.e. the projects have the costs, but both
pre- and post-project phases benefit from well realized
and maintained RT, may be central.

Question 3. Which are the various requirements tra-
ceability tools according to research literature?

The RT tools identified by the systematic review are
discussed in Section 3.3. The authors have categorized
RT tools into three categories as shown in Fig. 4. These
categories are requirements management tools provid-
ing traceability support, RT tools and other requirem-
ents management/traceability tools. The lack of empiri-
cal evaluation (validation) of the tools might be a serious
indicator.

Question 4. What requirements traceability tech-
niques are reported in research literature?

The RT techniques reported in the primary studies
are dicussed in Section 3.4. We have grouped traceab-
ility according to two aspects of RT as shown in Fig.
5. One interesting finding, which is noticeable through
this categorization, is the fact that there is very little
research done in the area of pre-RS traceability. In ad-

Fig. 4 Requirements traceability tools as found by this sys-
tematic review.

Fig. 5 Requirements traceability techniques found by the
systematic review.

dition it should be noticed that eleven out of fifteen RT
techniques lack empirical validation either through lab-
validation in academia (e.g. experiments), or through in-
dustry case studies or pilots.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19

5 Interviews conducted in industry

In order to determine RT challenges in industry, inter-
views were conducted with two software development
companies. These interviews are summarized below. The
questionnaire used and the response to the questions can
be found at (Torkar et al. 2008a).

5.1 Company A

5.1.1 Introduction

Company A is based in Sweden and a world-leading
telecommunication company (the interviewee were se-
lected from one of the company’s divisions). Company A
provides telecommunications equipment and other tele-
com related services in 140 countries. More than 1,000
networks use Company A’s products and 40% of all mo-
bile calls are made through systems provided by Com-
pany A. Company A is one of few telecom companies that
offer end-to-end solutions for all major mobile commu-
nication standards. The company is ISO 9000 certified.

5.1.2 Interviewee

The authors’ first interviewee was person x. She is work-
ing as a discipline driver for a whole product unit. She is
also responsible for the implementation of RT practices.
Person x has been working at Company A for the last
ten years and she has specifically worked with RT for
the last five years. The authors’ second interviewee was
person y. Person y is working as a requirements man-
ager and responsible for overall requirement engineering
activities. Person y has been working at Company A for
the last nine years and focused on RT for the last 1.5
years.

5.1.3 Traceability practices

Persons x any y believe that RT is an important and
useful activity within requirements management. There
are thirty people working in requirements engineering
and 3–5 people are dedicated to RT practices. Accord-
ing to the interviewees traceability is beneficial for the
company due to several reasons.

One of the major benefits is customer satisfaction.
Customer can check and follow the product development
progress according to their requirement. Requirements
traceability provides a guarantee for requirements en-
gineers and product managers that every requirement
is implemented. Requirements traceability helps to en-
sure impact analysis and derivation analysis. Requirem-
ents traceability facilitates impact analysis. Whenever a
change request is initiated at any stage we can trace the
requirements or design artifacts or test cases that can be

affected. Similarly in coverage analysis RT ensures im-
plementation of all requirements. Interviewees also men-
tioned that normally there are 200 change requests per
project.

5.1.4 Tool support for traceability

According to x and y, Company A use an automated
requirements management tool named MARS which is
developed by IBM specifically for Company A. There
is a specific module in MARS which is responsible for
traceability. Company A also uses another tool named
‘Focal Point’ for storing the elicited requirements. Af-
ter entering the requirements into Focal Point the Main
Requirement Specification (MRS) is generated from it.
After generating the MRS, it is entered into MARS.

By using MARS, requirements are stored in a central
repository. Each requirement has a number of attributes
and a unique identifier, i.e. ID, slogan and description.
Traceability of requirements is obtained by using MARS
and Focal Point as both tools are synchronized. Requir-
ements traceability matrices are generated to cater for
RT. These matrices are used to constantly be up-to-date
regarding the status of a requirement and whether the
requirement is implemented or not. MARS also facili-
tates change management. Change requests are initiated
based on the requirements stored in MARS. A change
control board analyzes the change request and decides
to accept or reject it. In case of acceptance, changes are
made permanent in MARS (versioning is also handled).

5.1.5 Factors influencing requirements traceability

According to the interviewees traceability is very well im-
plemented in MARS. Despite this, there are a few issues
e.g. the manual decomposition of master requirements
specification into detailed requirements for RT. Further-
more the maintenance cost of MARS is also very high,
therefore Company A is thinking about using another
tool in the future.

5.2 Company B

5.2.1 Introduction

Company B develops both bespoke and market-driven
products for its customers. This company is involved in
developing application suites and frameworks for mobile
phones based on the Symbian operating system. Com-
pany B is neither ISO9000 nor CMMI certified.

In Company B the requirements engineering activ-
ities are monitored by a department named Software
Development Organization (SDO). The responsibility of
SDO is to capture, clarify, process and trace requirem-
ents to testing and implementation. There are thirty peo-
ple working in the SDO; out of which thirteen people
work with capturing requirements.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20

5.2.2 Interviewee

Interviewee z has been working as a software quality en-
gineer in Company B for the last two years. The current
job responsibilities of person z include process develop-
ment, requirements matrix measurement and controlling
the development projects.

Although person z is not directly working with req-
uirements engineering but as a software quality engineer,
he has knowledge of requirements engineering activities
in Company B.

5.2.3 Traceability practices

In Company B the high level requirements are known
as Market Requirement Specification (MRS). They are
decomposed into Product REQuirements (PREQs). The
PREQs are further decomposed into a Feature Specifica-
tion (FS), which is specified at a low level. Traceability
is maintained by establishing connection between every
MRS, PREQ and FS; and vice versa.

There is no traceability in design and source code. In
testing, each FS is connected to at least one test case
which must have passed. The traceability is only main-
tained within the requirements and testing phases.

5.2.4 Tool support for traceability

Company B is using two different tools for managing req-
uirements and test cases. These tools are Requirements
Management System (RMS) and Test Management Sys-
tem (TMS). The RMS is used to manage requirements
like MRS, PREQ and FS. It also provides traceability
support but only against the requirements part. TMS is
used to manage and store test cases.

There is no link between the RMS and the TMS.
The traceability against FS, to test cases, is maintained
manually with the help of a Requirements Traceability
Matrix (RTM). The RTM is maintained in MS Excel.

5.2.5 Benefits of implementing traceability

In Company B, requirements are decomposed into Mar-
ket Requirements Specification (MRS) which is further
decomposed into PREQ and then to FS. Traceability
provides a higher level of details for the software engi-
neers and helps in identifying the source of the FS. Sim-
ilarly traceability from MRS to test cases ensures that
the feature is ‘complete’.

Traceability helps in impact analysis. In Company
B impact analysis is done in several ways. If it is done
early in the development life-cycle during PREQ phase;
usually by the product manager. The product manager
should have sufficient competency to declare that this
change will affect the product in one way or another.
But during development, impact analysis is done by the
team responsible for managing the component affected
by the change.

5.2.6 Factors influencing requirements traceability

Company B has good traceability support between fea-
ture specifications, product requirement specifications and
functional specification according to person z But at
the moment it is very difficult to determine requirem-
ents completion in a project. The requirement comple-
tion means that the FS has been developed and verified
for specific project. There is no direct link between RMS
and TMS. The FS that is verified for a particular project
is then maintained manually using MS Excel. Therefore,
tool support is one factor affecting RT.

Company B is not maintaining traceability between
requirements to design and code phase. The traceability
is maintained only between requirements and test cases.
Therefore it is very difficult to identify the components
that are affected by change requests in design and devel-
opment phase. There are normally 5–8 change requests
for every twenty features.

5.3 Analysis of interviews

The results of the case studies are interesting in the sense
that Company A and Company B are fairly different
with regards to traceability policies. The analysis of the
interview reveals that they can be placed into two differ-
ent categories (Ramesh 1998), i.e. high-end and low-end
traceability users.

For requirements management, Company A is using
a formal tool, MARS, which also provides traceability
support. MARS was tailored by IBM for Company A.
On the other hand Company B lacks formal methods
for traceability. Company B uses automated tools for
requirements management (RMS) and test case man-
agement (TMS). Although the automated traceability
is only maintained in RMS. There is no traceability in
design and code. Furthermore, to establish traceability
links between RMS and TMS, traceability matrices are
manually maintained using MS excel.

Company B uses static methods like traceability ma-
trices that are not updated automatically as the sys-
tem evolves. Therefore, manual traceability matrices lose
most of their usefulness after creation (low-end traceab-
ility users often exhibit this aspect). Whereas, high-end
traceability users recognize the need for maintaining tra-
ceability, which helps in reflecting the current status of
the system and generate traceability documentation at
any point in the development life-cycle. This practice is
exercised by Company A and not by Company B.

As stated by (Ramesh 1998), low-end traceability
users view traceability as a mandate from the customer,
while high-end traceability users consider traceability as
an important component of the overall quality engineer-
ing process. In Company A traceability is an integral part
of the quality assurance process. Similarly there are ap-
proximately 200 change request per project in Company

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

A and, hence, they rely on traceability to identify the
affected software artifacts due to change request. On the
other hand, their automated requirements management
tool (MARS) also provides richer traceability support.

In short, Company B implements traceability to en-
sure that two conditions are fulfilled. First, that high
level requirements known as MRS are decomposed into
low level requirements called Feature Specifications. Sec-
ond, to guarantee that a feature is complete. In the prac-
tices followed by Company B, a feature is said to be
complete when there is a traceable link between MRS
and test cases. Albeit these conditions are not enough
by themselves, we can conclude that Company A has a
fairly well defined traceability processes. In the future
Company A is planning to shift to another requirements
management tool (Rational RequisitePro), a tool which
is briefly discussed in Section 3.3. One question is if a
new tool will solve the problems with high maintenance
identified as a major challenge for Company A?

In Company B traceability practices are not fully im-
plemented. Although they are using tools for managing
requirements (RMS) and tools for managing test cases
(TMS), these tools provide traceability only for requir-
ements and test cases, i.e. there is no traceability support
between RMS and TMS. Similarly no traceability infor-
mation is maintained for traceability between the design
and development phase.

High-end traceability users like Company A view tra-
ceability as one of the core requirements engineering prac-
tice. They believe that traceability delivers more than it
costs. They can develop traceability tools in-house or
purchase them. On the other hand, low-end traceability
users like Company B, while acknowledging the impor-
tance of traceability, treat traceability more as an expen-
sive overhead.

In the systematic review the authors identified the
challenges related to traceability (reported in Tables 5
and 6). The views of Companies A and B are summarized
in Table 15 connected to the challenges identified by the
systematic review.

Table 15 contains some very interesting results. For
instance both companies believe that traceability deliv-
ers more than it costs. But in case of Company B there is
no traceability in design and code phase and, in addition,
Company B uses manual RT for maintaining traceability
links.

The challenges related to RT mapped to both the
systematic review and the case studies can be seen in
Table 16.

It is evident from Table 16 that some of the challenges
identified by the systematic review also hold in practice.

6 Threats to validity

An analysis of validity threats enhance the accuracy of
a research design by identifying factors which can affect

the results. In this section four different kinds of valid-
ity threats and their implications are discussed (Wohlin
et al. 2000).

6.1 Conclusion validity

One of the main purposes of a review protocol in a sys-
tematic review is to eliminate researcher bias (Kitchen-
ham 2004). The review protocol (see Section 2.1) was
reviewed by two independent researchers having experi-
ence in conducting systematic reviews. In addition, the
relevance of search terms and search resources defined
in the review protocol was ensured by conducting pilot
searches.

The questionnaires used for the interviews in indus-
try were validated to rectify poor questions and flow in
the layout of questionnaire. The heterogeneity of sub-
jects is another threat to conclusion validity (Wohlin
et al. 2000). Heterogeneity of subjects means that the
subjects belong to varied group with respect to back-
ground, education and experience. While homogeneity
of subjects means that the subjects belong to the same
group based on education, background and experience.
In our case, person x worked as a discipline driver in
the process area of RT for five years whereas person y
worked as a requirements manager and had experience
1.5 years of experience in RT. Person z had been working
as a software quality engineer for two years. In short, the
subjects of our interviews would be hard to categorize as
heterogeneous or homogeneous.

6.2 Construct validity

Evaluation apprehension is the main threat to construct
validity. According to (Wohlin et al. 2000), evaluation
apprehension means that humans have the tendency to
look better when they are evaluated. On the other hand
some people are afraid of being evaluated. In order to
eliminate this threat the interviewees in both companies
were ensured that they and their companies would be
anonymous.

Mono-operation bias is another threat to construct
validity. Mono-operation bias means that there is a single
independent variable, case, subject or treatment in a re-
search study (Wohlin et al. 2000). We have decreased this
threat by conducting interviews at two software compa-
nies. In Company A we interviewed two requirements
engineers and in Company B we interviewed one quality
engineer.

6.3 Internal validity

In our case, the interviews were recorded and it is a com-
mon observation that people may not feel comfortable if
the interview is audio taped. In order to eliminate this

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

Table 15 Views of Company A and B concerning challenges identified in the systematic review.

Ref. Issues identified in systematic review View of Company A and B
(Arkley and Riddle 2005;
Blaauboer et al. 2007)

Requirement traceability does not offer immediate
benefit to development process.

Both companies disagree with it. Requirements tra-
ceability offers benefits for both the companies.

(Blaauboer et al. 2007; Cleland-
Huang et al. 2004)

Lack of coordination between team members, de-
velopers think that traceability costs more then it
delivers, excessive use of traceability generate more
links that are not easy to manage.

Both companies believe that traceability delivers
more than it cost. Both companies do not consider
lack of coordination between team members and gen-
eration of traceability links as factors affecting trace-
ability.

(Blaauboer et al. 2007; Ramesh
1998)

Organizational, environmental and technical fac-
tors.

These factors are observed in both companies. Based
on these factors Company A is classified as being a
‘high-end traceability user’ and Company B is classi-
fied as ‘low-end traceability user’

(Cleland-Huang et al. 2003a) Informal development methods, insufficient re-
sources, time and cost for traceability, lack of coor-
dination between people, failure to follow standards.

Among these challenges the cost for traceability is a
significant factor for both companies.

(Cleland-Huang 2005) Failure to trace non-functional requirements (NFR)
like security, performance and usability.

These factors are important for both companies. The
NFRs like security, performance and usability are of
interest to Company B as they are developing appli-
cations for mobile phones. However Company B lacks
support for traceability of NFR.

(Cleland-Huang et al. 2005b) Manual construction of requirements traceability
matrix (RTM) is costly.

Manual construction of RTM is costly for Company
A, therefore they are focusing on using automated
tools. Manual construction of RTM is cheap for Com-
pany B, therefore they are using MS Excel sheets for
manual construction of RTM.

(Gotel and Finkelstein 1997) Some problematic questions are identified as chal-
lenges e.g. who identify a requirement and how, who
was responsible for the requirement to begin with,
who is currently responsible, who will take care of
change(s) in requirements, what will be the effect
on project in terms of knowledge loss, if some indi-
vidual or the whole group leave from company?

These challenges are not important for both compa-
nies. Company A is using the MARS tool and Com-
pany B is using RMS that takes care of these chal-
lenges.

(Gotel and Morris 2006) Requirements change by user, less appropriate in-
formation is available for making decision with req-
uirements.

Requirements change by user is always there but both
companies have maintained enough information to
make decision about requirements.

(Heindl and Biffl 2005) Cost and effort related to RT. Cost related to RT is important issue for both com-
panies.

(Ravichandar et al. 2007) Problems associated with tracing back to their
sources.

This issue is resolved in Company A by using the
MARS tool. This problem is important but unsolved
in the case of Company B.

(Tvete 1999) Requirements management challenges in industry
projects like e.g. inadequate impact analysis, lack
of information transfer.

Both companies have resolved these challenges by req-
uirements management tools like MARS and RMS.

Table 16 Most important challenges/issues deduced from the systematic review and from interviews in industry. In the
third column SR is short for systematic review and I is short for interview conducted in industry.

Problem/issue Motiviation Source
Cost and efforts related to RT. Cost and efforts are the major factors due to which companies do not

use traceability.
SR & I

How much traceability is enough? This question is still unanswered and research community is working to
solve this issue.

SR

Change requests or requirements change. If a company is not following traceability practices then it is very diffi-
cult to manage change requests.

SR

Failure to trace non-functional requirements. There are number of interdependencies and trade-offs between non-
functional requirements. Therefore NFR are important with respect to
traceability.

SR

Tracing requirements back to their sources. Tracing requirements back to their sources helps to identify origin of
requirements. This issue is one of the key factors responsible for defec-
tive RT.

SR

Traceability support between all phases of a software de-
velopment life-cycle.

Traceability should be maintained between all the artefacts produced
during the software development and maintenance. In e.g. Company B
there is a lack of traceability support design and code phase.

I

potential threat to internal validity the interviewees were
assured that the recordings would only be used by us.

The internal validity threat related to the systematic
review is mainly the publication bias. Publication bias
refers to the fact that positive results are more likely to
be published than the negative facts (Kitchenham 2004).
In order to eliminate this threat the selected conferences
and proceedings mentioned in Table 1 were manually

searched. Similarly the ‘study quality assessment and
procedures’, as mentioned in the review protocol, de-
creased the factor of publication bias according to our
opinion.

Selection of subjects from a population also affects
internal validity (Wohlin et al. 2000). In our case we
interviewed people working in the process area of requir-
ements engineering. However, one of our subjects (person

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23

z) did not work directly with RT. Nevertheless, person
z had adequate educational background, experience and
knowledge about the practices related to RT and requir-
ements engineering carried out in Company B.

6.4 External validity

One of the threats to external validity is the interaction
of selection and treatment (Wohlin et al. 2000). This
occurs when wrong subjects are taken from the popu-
lation and, hence, the results cannot be generalized to
the whole population. In our case the subjects of our in-
terviews are people working in the process area of RT.
On the other hand, we acknowledge, that there still is
a threat that validation results may not be generalized
to companies related to other software engineering do-
mains.

7 Conclusions

This paper presented a systematic review on requirem-
ents traceability (RT). The systematic review augmented
and to parts validated in industry through two case stud-
ies.

The first thing evaluated by the systematic review
was to ascertain the most commonly used definition of
RT. Gotel and Finkelstein’s, “the ability to describe and
follow the life of a requirement in both forwards and
backwards direction (i.e. from its origins, through its de-
velopment and specification to its, subsequent deploy-
ment and use, and through periods of on-going refine-
ment and iteration in any of these phases)” was the
most commonly used definition (about 80%). The main
motivation for this investigation was to ascertain what
common understanding researchers working on RT used.
This maps to both the challenges identified, and the tech-
niques and methods developed to address them. An in-
teresting observation is that cost is often used as a main
motivation for not implementing adequate traceability
policies, and maintaining traceability. Large parts of the
costs of maintaining traceability rests on the project,
and while the benefits are felt by projects, they are also
spread to both pre- and post-project activities. Given
this, project motivation may be less than optimal, pos-
sibly influencing or enhancing other issues such as coor-
dination, roles and responsibilities, and the use of tech-
niques. This could be further aggravated by the difficulty
in deciding which requirements to trace carefully (e.g.
critical or volatile requirements). As an example can be
mentioned results form the case study, both Company A
and B recognize the benefits of RT, and offer the view
that the benefits outweigh the costs, although this might
not be directly evident by the individual project. Requir-
ements traceability, over time, as a product evolves over
releases, can be critical for maintaining traceability be-
tween requirements implemented in a certain release and

associated test cases. A defect appearing at a customer
site not running the latest version can thus be traced,
and the correct test cases can be employed after de-
fect removal. This is especially common in market-driven
product development of software intensive systems with
long lifetimes, sometimes spanning over decades.

Looking at both the techniques/methods and tools
developed to address the challenges additional observa-
tions can be made. First, most techniques and tools were
not validated empirically. Even the ones covered in sev-
eral publications lacked validation, the papers focused
on extensions and new application, not evaluation. This
might be a result of not catching the validation pub-
lications in the review, although we consider the sheer
amount to be an indicator of overall validation being ab-
sent in many cases. The implications from a academic
perspective is that we build on non-validated techniques
as we refine and extend, and from a industrial perspec-
tive, with no empirical evidence it is hard to gauge the
usability and usefulness beyond the illustrations offered
in the publications.

Among all traceability techniques only the pre-RS
technique emphasizes pre-RS traceability aspects, the
rest of the techniques focus on post-RS traceability as-
pects. This is contrary to Gotel and Finkelstein’s defi-
nition where post-RS is only one aspect. This might be
an indication of that development project are the focus,
and not what happens before or after a project. The pos-
sible implications of this is evident as the benefits of RT
is only partly associated with the project. This is espe-
cially true looking at product development going beyond
the ‘one shot’ bespoke development projects.

The realization that RT reaches over the project per-
spective and into the product life-cycle perspective might
be an important realization for both industry and resear-
chers. It will enable techniques that offer a complete RT
solution, which might include, and take inspiration from,
the good-examples presented through this systematic re-
view, and extending them to cover a life-cycle perspec-
tive. These new techniques would also give industry the
possibility to see RT as something more than a project
problem as the cost and effort can be spread over the
pre-RT (e.g. product management), in project, and the
post-project (next release or maintenance) perspectives.

Acknowledgements

This work was partly funded by the Knowledge Foun-
dation, Sweden (under a research grant for the BESQ
project).

References

Abran, A., Moore, J. W., Bourque, P., Dupuis, R. (Eds.),
2004. Guide to the software engineering body of knowl-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24

edge (SWEBOK). IEEE Computer Society, Los Alamitos,
California.

Ahn, S., Chong, K., 2006. A feature-oriented requirements
tracing method: A study of cost-benefit analysis. In: Pro-
ceedings of the 2006 International Conference on Hybrid
Information Technology. IEEE Computer Society, Wash-
ington, DC, USA, pp. 611–616.

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo,
E., 2002. Recovering traceability links between code and
documentation. IEEE Transactions on Software Engi-
neering 28 (10), 970–983.

Arkley, P., Riddle, S., 2005. Overcoming the traceability ben-
efit problem. In: Proceedings of the 13th IEEE Interna-
tional Conference on Requirements Engineering. IEEE
Computer Society, Washington, DC, USA, pp. 385–389.

Aurum, A., Wohlin, C., 2005. Engineering and managing soft-
ware requirements. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA.

Bailin, S. C., Davis, A. M., Dorfman, M., Fairley, R. E., Faulk,
S. R., Forsberg, K., Ippolito, L. M., Mooz, H., Palmer,
J. D., Reilly, J., Saiedian, H., Thayer, R. H., Wallace,
D. R., 1997. Software requirements engineering, 2nd Edi-
tion. IEEE Computer Society Press, Los Alamitos, CA,
USA.

Bashir, M. F., Qadir, M. A., December 2006. Traceability
techniques: A critical study. In: IEEE Multitopic Con-
ference. IEEE Computer Society, Washington, DC, USA,
pp. 265–268.

Blaauboer, F., Sikkel, K., Aydin, M. N., 2007. Deciding to
adopt requirements traceability in practice. In: Krogstie,
J., Opdahl, A. L., Sindre, G. (Eds.), CAiSE. Vol. 4495 of
Lecture Notes in Computer Science. Springer, pp. 294–
308.

Bouquet, F., Jaffuel, E., Legeard, B., Peureux, F., Utting, M.,
2005. Requirements traceability in automated test gen-
eration: Application to smart card software validation.
SIGSOFT Software Engineering Notes 30 (4), 1–7.

Bubl, F., Balser, M., 2005. Tracing cross-cutting requirem-
ents via context-based constraints. In: Proceedings of
the 9th European Conference on Software Maintenance
and Reengineering. IEEE Computer Society, Washington,
DC, USA, pp. 80–90.

Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt
och Dag, J., 2001. An industrial survey of requirements in-
terdependencies in software product release planning. In:
Proceedings of the Fifth IEEE International Symposium
on Requirements Engineering. IEEE Computer Society,
Washington, DC, USA, p. 84.

Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J., October
1999. Non-functional requirements in software engineer-
ing (The Kluwer International Series in Software Engi-
neering Volume 5) (International Series in Software En-
gineering). Kluwer Academic Publisher.

Cleland-Huang, J., 2005. Toward improved traceability of
non-functional requirements. In: Proceedings of the 3rd
International Workshop on Traceability in Emerging
Forms of Software Engineering. ACM, New York, NY,
USA, pp. 14–19.

Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Ro-
manova, E., 2007. Best practices for automated traceab-
ility. IEEE Computer 40 (6), 27–35.

Cleland-Huang, J., Chang, C. K., Christensen, M., 2003a.
Event-based traceability for managing evolutionary
change. IEEE Transactions on Software Engineering
29 (9), 796–810.

Cleland-Huang, J., Chang, C. K., Ge, Y., 2002a. Supporting
event based traceability through high-level recognition of
change events. In: Proceedings of the 26th International
Computer Software and Applications Conference on Pro-
longing Software Life: Development and Redevelopment.

IEEE Computer Society, Washington, DC, USA, pp. 595–
602.

Cleland-Huang, J., Chang, C. K., Sethi, G., Javvaji, K.,
Hu, H., Xia, J., 2002b. Automating speculative queries
through event-based requirements traceability. In: Pro-
ceedings of the 10th Anniversary IEEE Joint Interna-
tional Conference on Requirements Engineering. IEEE
Computer Society, Washington, DC, USA, pp. 289–298.

Cleland-Huang, J., Chang, C. K., Wise, J. C., 2003b. Au-
tomating performance-related impact analysis through
event based traceability. Requirements Engineering 8 (3),
171–182.

Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhan-
skaya, E., Christina, S., 2005a. Goal-centric traceability
for managing non-functional requirements. In: Proceed-
ings of the 27th International Conference on Software En-
gineering. ACM, New York, NY, USA, pp. 362–371.

Cleland-Huang, J., Settimi, R., Duan, C., Zou, X., 2005b.
Utilizing supporting evidence to improve dynamic req-
uirements traceability. In: Proceedings of the 13th IEEE
International Conference on Requirements Engineering.
IEEE Computer Society, Washington, DC, USA, pp. 135–
144.

Cleland-Huang, J., Zemont, G., Lukasik, W., 2004. A het-
erogeneous solution for improving the return on invest-
ment of requirements traceability. In: Proceedings of the
12th IEEE International Requirements Engineering Con-
ference. IEEE Computer Society, Washington, DC, USA,
pp. 230–239.

CMMI, October 2008. Software Engineering Institute
| Carnegie Mellon. http://www.sei.cmu.edu/cmmi/.

Cysneiros, L. M., do Prado Leite, J. C. S., May 2004. Nonfun-
ctional requirements: From elicitation to conceptual mod-
els. IEEE Transactions on Software Engineering 30 (5),
328–350.

Dekhtyar, A., Hayes, J. H., Sundaram, S. K., 2006. Advanc-
ing candidate link generation for requirements tracing:
The study of methods. IEEE Transactions on Software
Engineering 32 (1), 4–19.

Dept. of Defence, US, February 1988. Military standard: De-
fense system software development (DOD-STD-2167A).
Tech. rep., Space and Naval Warfare Systems Command,
Washington, DC.

Dick, J., 2005. Design traceability. IEEE Software 22 (6), 14–
16.

do Prado Leite, J. C. S., Breitman, K. K., October 2003.
Experiences using scenarios to enhance traceability. In:
2nd International Workshop on Traceability in Emerging
Forms of Software Engineering in conjunction with the
18th IEEE International Conference on Automated Soft-
ware Engineering. Montreal, Canada, pp. 63–70.

Edwards, M., Howell, S. L., 1991. A methodology for system
requirements specification and traceability for large real-
time complex systems. Tech. rep., Naval Surface Warfare
Center.

Egyed, A., Grünbacher, P., 2002. Automating requirements
traceability: Beyond the record & replay paradigm. In:
Proceedings of the 17th IEEE International Conference
on Automated Software Engineering. IEEE Computer So-
ciety, Washington, DC, USA, pp. 163–.

Gorschek, T., May 2006. Requirements engineering support-
ing technical product management. Ph.D. thesis, Dept. of
Systems and Software Engineering, Blekinge Institute of
Technology.

Gorschek, T., Garre, P., Larsson, S., Wohlin, C., 2006. A
model for technology transfer in practice. IEEE Software
23 (6), 88–95.

Gorschek, T., Wohlin, C., 2005. Requirements abstraction
model. Requirements Engineering 11 (1), 79–101.

http://www.sei.cmu.edu/cmmi/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25

Gotel, O., Finkelstein, A., 1994. An analysis of the requirem-
ents traceability problem. In: International Conference on
Requirements Engineering. pp. 94–101.

Gotel, O., Finkelstein, A., 1997. Extended requirements tra-
ceability: Results of an industrial case study. In: Proceed-
ings of the 3rd IEEE International Symposium on Req-
uirements Engineering. IEEE Computer Society, Wash-
ington, DC, USA, pp. 169–.

Gotel, O., Morris, S. J., 2006. Crafting the requirements
record with the informed use of media. In: Proceedings
of the First International Workshop on Multimedia Req-
uirements Engineering. IEEE Computer Society, Wash-
ington, DC, USA, pp. 5–.

Gross, D., Yu, E., February 2001. From non-functional req-
uirements to design through patterns. Requirements En-
gineering 6 (1), 18–36.

Hamilton, V. L., Beeby, M. L., December 1991. Issues of tra-
ceability in integrating tools. In: Proceedings of the IEE
Colloquium Tools and Techniques for Maintaining Trace-
ability during Design. IEEE Press, Piscataway, NJ, USA,
pp. 4/1–4/3.

Han, J., 2001. TRAM: A tool for requirements and archi-
tecture management. Australian Computer Science Com-
munincations 23 (1), 60–68.

Hayes, J. H., Dekhtyar, A., Osborne, J., 2003. Improving req-
uirements tracing via information retrieval. In: Proceed-
ings of the 11th IEEE International Conference on Req-
uirements Engineering. IEEE Computer Society, Wash-
ington, DC, USA, pp. 138–.

Hayes, J. H., Dekhtyar, A., Sundaram, S. K., 2005. Improving
after-the-fact tracing and mapping: Supporting software
quality predictions. IEEE Software 22 (6), 30–37.

Hayes, J. H., Dekhtyar, A., Sundaram, S. K., Holbrook,
E. A., Vadlamudi, S., April, A., 2007. Requirements trac-
ing on target (RETRO): Improving software maintenance
through traceability recovery. Innovations in Systems and
Software Engineering 3 (3), 193–202.

Heindl, M., Biffl, S., 2005. A case study on value-based req-
uirements tracing. In: Proceedings of the 10th European
software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations
of software engineering. ACM, New York, NY, USA, pp.
60–69.

Howard, R. A., Matheson, J. E. (Eds.), 1984. Readings on the
principles and applications of decision analysis. Strategic
Decision Group, Menlo Park, CA.

IEEE Society, October 1998. IEEE recommended practice
for software requirements specifications (IEEE Std. 830–
1998). Tech. rep., IEEE Computer Society.

Jarke, M., 1998. Requirements tracing. Communications of
the ACM 41 (12), 32–36.

Jirapanthong, W., Zisman, A., 2007. XTraQue: Traceability
for product line systems. Software and Systems Modeling.
URL http://dx.doi.org/10.1007/s10270-007-0066-8

Kececi, N., Garbajosa, J., Bourque, P., July 2006. Model-
ing functional requirements to support traceability analy-
sis. In: 2006 IEEE International Symposium on Industrial
Electronics. Vol. 4. pp. 3305–3310.

Kelleher, J., 2005. A reusable traceability framework using
patterns. In: Proceedings of the 3rd International Work-
shop on Traceability in Emerging Forms of Software En-
gineering. ACM, New York, NY, USA, pp. 50–55.

Kitchenham, B., 2004. Procedures for performing systematic
reviews. Tech. rep., Keele University and NICTA.

Lormans, M., van Deursen, A., 2005. Reconstructing requir-
ements coverage views from design and test using trace-
ability recovery via LSI. In: Proceedings of the 3rd In-
ternational Workshop on Traceability in Emerging Forms
of Software Engineering. ACM, New York, NY, USA, pp.
37–42.

de Lucia, A., Fasano, F., Oliveto, R., Tortora, G., 2007. Re-
covering traceability links in software artifact manage-
ment systems using information retrieval methods. ACM
Transactions on Software Engineering and Methodology
16 (4), 13–.

Marcus, A., Maletic, J. I., Sergeyev, A., 2005. Recovery of
traceability links between software documentation and
source code. International Journal of Software Engineer-
ing and Knowledge Engineering 15 (5), 811–836.

Naslavsky, L., Alspaugh, T. A., Richardson, D. J., Ziv, H.,
2005. Using scenarios to support traceability. In: Proceed-
ings of the 3rd International Workshop on Traceability
in Emerging Forms of Software Engineering. ACM, New
York, NY, USA, pp. 25–30.

Noll, R. P., Ribeiro, M. B., 2007. Enhancing traceability using
ontologies. In: Proceedings of the 2007 ACM Symposium
on Applied Computing. ACM, New York, NY, USA, pp.
1496–1497.

Ozkaya, I., Akin, O., August 2007. Tool support for
computer-aided requirement traceability in architectural
design: The case of DesignTrack. Automation in Con-
struction 16, 674–684.

Pohl, K., Dömges, R., Jarke, M., 1997. Towards method-
driven trace capture. In: Proceedings of the 9th Inter-
national Conference on Advanced Information Systems
Engineering. Springer-Verlag, London, UK, pp. 103–116.

Ramesh, B., 1998. Factors influencing requirements traceabil-
ity practice. Communications of the ACM 41 (12), 37–44.

Ramesh, B., Jarke, M., 2001. Toward reference models for
requirements traceability. IEEE Transactions on Software
Engineering 27 (1), 58–93.

Ramesh, B., Stubbs, C., Powers, T., Edwards, M., 1997. Req-
uirements traceability: Theory and practice. Annals of
Software Engineering 3, 397–415.

Ravichandar, R., Arthur, J. D., Perez-Quinones, M., 2007.
Pre-requirement specification traceability: Bridging the
complexity gap through capabilities.
URL http://www.citebase.org/abstract?id=oai:
arXiv.org:cs/0703012

Riebisch, M., Hubner, M., 2005. Traceability-driven model
refinement for test case generation. In: Proceedings of
the 12th IEEE International Conference and Workshops
on Engineering of Computer-Based Systems. IEEE Com-
puter Society, Washington, DC, USA, pp. 113–120.

Rochimah, S., Wan Kadir, W. M. N., Abdullah, A. H.,
2007. An evaluation of traceability approaches to sup-
port software evolution. In: Proceedings of the 2007 Inter-
national Conference on Software Engineering Advances.
IEEE Computer Society, Washington, DC, USA, pp. 19–.

Salem, A. M., 2006. Improving software quality through
requirements traceability models. In: Proceedings of the
IEEE International Conference on Computer Systems
and Applications. IEEE Computer Society, Washington,
DC, USA, pp. 1159–1162.

Seaman, C. B., 1999. Qualitative methods in empirical stud-
ies of software engineering. IEEE Transactions on Soft-
ware Engineering 25 (4), 557–572.

SEI, October 2008. Requirements tracing—An over-
view. http://www.sei.cmu.edu/str/descriptions/
reqtracing.html.

Sherba, S. A., Anderson, K. M., 2003. A framework for man-
aging traceability relationships between requirements and
architectures. In: Second International Software Requir-
ements to Architectures Workshop part of 2003 Interna-
tional Conference on Software Engineering. ACM, New
York, NY, USA, pp. 150–156.

Shin, J. E., Sutcliffe, A. G., Gregoriades, A., 2005. Scenario
advisor tool for requirements engineering. Requirements
Engineering 10 (2), 132–145.

http://dx.doi.org/10.1007/s10270-007-0066-8
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0703012
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0703012
http://www.sei.cmu.edu/str/descriptions/reqtracing.html
http://www.sei.cmu.edu/str/descriptions/reqtracing.html

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26

Sommerville, I., Kotonya, G., 1998. Requirements engineer-
ing: Processes and techniques. John Wiley & Sons, Inc.,
New York, NY, USA.

Sommerville, I., Sawyer, P., 1997. Requirements engineering:
A good practice guide. John Wiley & Sons, Inc., New
York, NY, USA.

Spanoudakis, G., Zisman, A., Perez-Minana, E., Krause, P.,
July 2004. Rule-based generation of requirements trace-
ability relations. Journal of Systems and Software 72,
105–127.

Streitferdt, D., 2001. Traceability for system families. In: Pro-
ceedings of the 23rd International Conference on Software
Engineering. IEEE Computer Society, Washington, DC,
USA, pp. 803–804.

Torkar, R., Gorschek, T., Feldt, R., Raja, U. A., Kamran,
K., October 2008a. Questionnaire with answers. http:
//iaser.tek.bth.se/torkar/q_and_a.pdf.

Torkar, R., Gorschek, T., Feldt, R., Raja, U. A., Kamran,
K., October 2008b. Rejected articles. http://iaser.tek.
bth.se/torkar/rej_art.pdf.

Tvete, B., 1999. Introducing efficient requirements manage-
ment. In: Proceedings of the 10th International Workshop
on Database & Expert Systems Applications. IEEE Com-
puter Society, Washington, DC, USA, pp. 370–.

Verhanneman, T., Piessens, F., De Win, B., Joosen, W., 2005.
Requirements traceability to support evolution of access
control. In: Proceedings of the 2005 Workshop on Soft-
ware Engineering for Secure Systems—Building Trust-
worthy Applications. ACM, New York, NY, USA, pp. 1–7.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,
B., Wesslén, A., 2000. Experimentation in software engi-
neering: An introduction. Kluwer Academic Publishers,
Norwell, MA, USA.

Yadla, S., Hayes, J. H., Dekhtyar, A., 2005. Tracing requir-
ements to defect reports: An application of information
retrieval techniques. Innovations in Systems and Software
Engineering 1 (2), 116–124.

http://iaser.tek.bth.se/torkar/q_and_a.pdf
http://iaser.tek.bth.se/torkar/q_and_a.pdf
http://iaser.tek.bth.se/torkar/rej_art.pdf
http://iaser.tek.bth.se/torkar/rej_art.pdf

