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a b s t r a c t

Context: Test models describe the expected behavior of the software under test and provide the basis for
test case and oracle generation. When test models are expressed as UML state machines, this is typically
referred to as state-based testing (SBT). Despite the importance of being systematic while testing, all test-
ing activities are limited by resource constraints. Thus, reducing the cost of testing while ensuring suffi-
cient fault detection is a common goal in software development. No rigorous industrial case studies of
SBT have yet been published.
Objective: In this paper, we evaluate the cost-effectiveness of SBT on actual control software by studying
the combined influence of four testing aspects: coverage criterion, test oracle, test model and unspecified
behavior (sneak paths).
Method: An industrial case study was used to investigate the cost-effectiveness of SBT. To enable the
evaluation of SBT techniques, a model-based testing tool was configured and used to automatically gen-
erate test suites. The test suites were evaluated using 26 real faults collected in a field study.
Results: Results show that the more detailed and rigorous the test model and oracle, the higher the fault-
detection ability of SBT. A less precise oracle achieved 67% fault detection, but the overall cost reduction
of 13% was not enough to make the loss an acceptable trade-off. Removing details from the test model
significantly reduced the cost by 85%. Interestingly, only a 24–37% reduction in fault detection was
observed. Testing for sneak paths killed the remaining eleven mutants that could not be killed by the con-
formance test strategies.
Conclusions: Each of the studied testing aspects influences cost-effectiveness and must be carefully con-
sidered in context when selecting strategies. Regardless of these choices, sneak-path testing is a neces-
sary step in SBT since sneak paths are common while also undetectable by conformance testing.

! 2014 Elsevier B.V. All rights reserved.

1. Introduction

In practice, software testing is often conducted as a manual, ad
hoc task, instead of as an automated and systematic procedure. As
a result, testing is likely to be incomplete and costly when trying to
achieve an adequate level of dependability. Since thorough soft-
ware testing is an expensive task, reducing the cost of testing while
ensuring sufficient fault-detection effectiveness, is a common goal
in the industry. In order for companies to make the right trade-offs
when deciding how to test their software, it is essential that they
understand how various test strategies compare in terms of cost
effectiveness.

One approach to software testing derives test cases from a
behavior model of the system under test (SUT) and is referred to
as model-based testing (MBT) [1]. MBT is not a new research area
in software engineering [2] but empirical evidence about its cost-
effectiveness, especially in industrial contexts, is very limited.
However, in recent years, the level of interest regarding MBT in
both industry and academia has been increasing. This is visible
from the many reported academic studies [1,3–7] and industrial
projects [8–11] on model-based testing. This suggests that there
might be an increasing awareness of the benefits provided by
MBT [1].

As one of several possible input models for MBT, state machines
are widely used to specify the behavior of the most critical and
complex components that exhibit state-driven behavior [12].
Many object-oriented methodologies recommend modeling such
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components with state models for the purpose of test automation
[13], which is referred to as state-based testing (SBT). This is in part
due to the fact that the specification of a software product can be
used as a guide for designing functional tests [14]. As stated by Off-
utt and Abdurazik [14], formal specifications represent a signifi-
cant benefit for testing because they precisely describe what
functions the software is supposed to provide.

In particular, such specifications enable the automatic genera-
tion of test cases and oracles using MBT tools. Tool support for
MBT has improved in recent years, but most of the tools specifi-
cally target an application context and cannot be easily adapted
to others. A number of tools have been developed to support
MBT, e.g., [8,11,15–19]. However, all of them have at least one of
the following drawbacks. Well-established standards for modeling
the SUT are not supported, thus making it difficult to integrate MBT
with the rest of the development process, which in turn makes the
adaptation and use of MBT more costly. Often, tools cannot be eas-
ily customized to different needs and contexts. For instance, a tes-
ter may want to experiment with different test strategies to help
target specific kinds of faults. Moreover, practical constraints can
evolve, such as the test-script language a company works with,
and such changes are often not easy to accommodate.

However, regardless of the applied tool, there are several chal-
lenges related to investigating fault-detection effectiveness, for
example the possibly limited number of faults that are present in
the SUT [12]. Previous work has addressed this problem by seeding
artificial faults into correct versions of the SUT using mutation
operators [20,21]. Although the results from various studies [22–
24] have suggested that faults seeded using mutation operators
may, under certain conditions, be representative of realistic faults,
it is still necessary to study fault-detection effectiveness in more
realistic settings, using real faults, if we wish to increase the exter-
nal validity of the results. A few studies have partially used natu-
rally occurring faults [25]. However, these constituted only a
minor percentage of the total number of faults. The research pre-
sented in this paper was motivated by a lack of empirical evidence
regarding the state-based testing of industrial software with real-
istic faults and, thus, complements studies conducted in artificial
settings.

Another key challenge in software testing is how to define and
automate the test oracle, to determine whether or not the system
is behaving as intended during a test execution. Very few studies
empirically evaluate test oracles in state-based contexts. This area
deserves more research, since the cost and fault-detection ability
of different oracles may vary substantially [13].

Yet another interesting area of SBT, which has hitherto been gi-
ven little attention, is the possible benefit of increasing cost effec-
tiveness by removing details from the test model. Several studies,
e.g. [26,27], focus on lowering the cost of testing by reducing the
size of the test suites, while preserving their original coverage.
There are conflicting results on how this reduction influences the
fault-detection ability of the test suites, in particular with respect
to how rigorous the test criteria are. Heimdahl and George [26] ex-
pressed concern about using this technique on structural coverage,
due to the possible loss in fault-detection. Whereas such test-
reduction techniques are based on removing tests in a test suite
that do not affect the achieved level of coverage, this paper instead
focuses on abstracting the test model itself. This means that not
only will the cost of testing potentially be reduced due to a lower
number of test cases that need to be generated and maintained, but
savings would also result from a less detailed test model that re-
quires less modeling and maintenance effort.

The need for credible empirical results regarding the cost effec-
tiveness of SBT leads to the central purpose of this paper: To empir-
ically evaluate the cost effectiveness of SBT within the context of a
safety–critical system by configuring and applying an extensible

tool for automating the test procedure according to various strate-
gies and oracles. More specifically, we will investigate the effect of
coverage criteria, test oracle, test model, and sneak-path testing on
cost effectiveness. Details regarding the requirements, design and
development of the tool can be found in [28].

We used the embedded case study method [29] to evaluate
these four aspects of SBT and their influence on cost effectiveness.
The case study was conducted within the context of a research pro-
ject at ABB, where a safety-monitoring component in a control sys-
tem was developed using UML state machines [30] and
implemented according to the extended state-design pattern [31].

In order to evaluate SBT techniques, an MBT tool, the TRansfor-
mation-based tool for Uml-baSed Testing (TRUST), was configured
and used to automatically generate the studied test suites. The
generated test suites were evaluated using 26 real faults collected
in a global field study. The field study included 11 developers from
three ABB departments who solved a maintenance task, split in six
sub tasks, for the safety-monitoring component under study. Man-
ual code inspections were used to collect actual faults.

Results from the case study indicate that the evaluation of cov-
erage criteria regarding fault-detection are consistent with the re-
sults obtained using artificial faults in existing research, thus
increasing the external validity of those results. We used two ora-
cles of different precision levels: (1) the state-invariant oracle
checks the state invariant of the resulting state; (2) the state-poin-
ter oracle only checks that the array holding a pointer to the cur-
rent state is as expected. Applying the most rigorous oracle, i.e.,
the combination of the state invariant and state pointer oracle, ap-
pears to be worthwhile given the significant increase in fault-
detection effectiveness as compared to applying the state-pointer
oracle alone. Interestingly, removing a rather substantial part of
state-machine details resulted in a significant cost reduction
(85% across all six criteria for both oracles), at the expense of an
average reduction in fault-detection of 24–37% (depending on
the applied oracle). Such results warrant further research into this
type of test-suite reduction strategy. The application of sneak-path
testing, i.e., testing triggers that should not result in any transition,
also highlights the importance of this type of testing: All the mu-
tants that remained undetected after applying conformance testing
(i.e., checking that the system under test reacts according to the
specified behavior) were killed by the sneak-path tests.

In terms of benefits, the comparison of the cost of modeling
with the number of generated test cases has shown that using
TRUST should yield significant cost savings when applying stan-
dard state-machine coverage criteria. In other words, the cost of
manually writing the same test cases is likely to be larger than
the cost of modeling the SUT and generating the test cases. Such
benefits will tend to increase with subsequent versions of the SUT.

The findings from this case study are relevant for both industry
and academia. Research on software testing that is to be adopted in
industrial settings must provide evidence that it is cost-effective
for the industry. For this, case studies are essential, in that they
give the opportunity to test concepts in a real environment. In
addition, the effort required by keeping state machine models
updated may be easier for practitioners to accept when there is
evidence for the cost effectiveness of SBT. Finally, the directions
for future work should be useful as guidance for further research
on SBT.

The remainder of this paper is structured as follows. Section 2
provides background information about SBT, test oracles, test mod-
els, and MBT tools. The research methodology is described in Sec-
tion 3, whereas the execution of the study is described in Section 4.
Section 5 reports on the results which are analyzed in Section 6,
and further discussed in Section 7. Threats to validity are addressed
in Section 8. Finally, Section 9 concludes the paper and suggests fu-
ture work.
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2. Background

2.1. Concepts

State-based testing (SBT) derives test cases from state machines
that model the expected system behavior. The system under test
(SUT) is tested with respect to how it reacts to different events
and sequences of events. SBT thus validates whether the transi-
tions that are fired and the states that are reached are compliant
with what is expected, given the events that are received. States
are normally defined by their invariant, a condition that must al-
ways be true when the SUT is in that state.

Previous work on SBT has used coverage criteria that were de-
fined to cover finite state machines. However, as an extension to
a finite state machine, those criteria also apply to UML state ma-
chines if concurrency and hierarchy are removed [12]. The descrip-
tions of the coverage criteria used in the following paragraph are
based on definitions given by Binder [32], pp. 259–266 and Offutt
et al. [33].

All transition coverage (AT) is obtained if every specified transi-
tion in a state machine is exercised at least once [32]. The order of
the exercised transitions is not important. Applying this criterion
ensures that all states, events and actions are exercised, and is con-
sidered as being the minimum amount of coverage that one should
achieve when testing software [32]. All round-trip coverage (RTP)
demands that all paths in a state machine that begin and end with
the same state be covered. To cover all such paths, a test tree (con-
sisting of nodes and edges corresponding to states and transitions
in a state machine) is constructed by a breadth- or depth-first tra-
versal of the state machine. The test tree that corresponds to the
RTP strategy is called a transition tree. A node in the transition tree
is a terminal node if the node already exists anywhere in the tree
that has been constructed so far or is a final state in the state ma-
chine. Now, by traversing all paths in the transition tree, we cover
all round-trip paths and all simple paths (the paths in the state ma-
chine that begin with the initial state and end with the final state).
According to Binder [32], p. 248, this technique will find incorrect
or missing transitions, incorrect or missing transition outputs and
actions, missing states, and will detect some of the corrupt states. A
weaker form of the RTP exercises only one of the disjuncts in guard
conditions. All transition-pairs coverage (ATP) is given by a test
suite that contains tests covering all pairs of adjacent transitions.
For each pair of adjacent transitions from state Si to Sj and from
state Sj to Sk in the state machine, the test suite contains a test that
traverses the pair of transitions in sequence. A test suite that
achieves full predicate coverage (FP) ensures that each clause in
each predicate on guarded transitions is tested independently
[14]. The Paths of length n are all possible sequences of transitions
of length n from the initial state.

The above-mentioned test strategies are known as conformance
testing, which seek to compare explicitly modeled behavior to ac-
tual software execution. However, it is also important to test
whether or not the software correctly handles unspecified behav-
ior, that Binder refers to as sneak paths [32]. State machines are
usually incompletely specified and this is normally interpreted as
events for which the system should not react, i.e., changing states
or performing actions. Sneak-path testing sends every unspecified
event in all states. In other words, its aim is to verify the absence of
unintentional sneak paths in the software being tested as they may
have catastrophic consequences in safety–critical systems.

One approach to evaluate the cost effectiveness of SBT strate-
gies is mutation analysis. It is carried out by seeding automatically
generated faults into ‘‘correct’’ versions of the SUT; one fault is
seeded in each mutant version to avoid interaction effects between
faults [12]. Mutants are identified via static analysis of the source

code by a mutation system, such as in [34]. When a test suite de-
tects the seeded fault, we say the test suite has ‘‘killed’’ the mutant.
The number of mutants killed by a specific test suite divided by the
number of total mutants, referred to as the mutation score, is used
to assess the test suite’s fault-detection ability. Some mutants may
be functionally equivalent to the correct version of the SUT. These
are called equivalent mutants and should not be included in the
pool of mutants used for analysis.

2.2. Related work

Some of the existing MBT research has evaluated state-based
coverage criteria within the context of UML state machines. The
most studied state-based coverage criteria are FP, ATP, RTP, and
AT. The FP criterion tends to obtain higher or similar mutation
score as ATP, although at a higher cost. With this in mind, the
AT, RTP, and ATP coverage criteria were selected for use in this
paper.

AT has been found not to provide an adequate level of fault
detection [12]. With the exception of results reported in [35],
where only 54% of mutants were killed, ATP has shown to be a
rather strong coverage criterion as compared to AT and RTP,
although at a higher cost. RTP was shown to be more cost-effective
than AT and ATP [12]. Another study [13] found that RTP testing is
not likely to be sufficient in most situations as significant numbers
of faults remained undetected (from 10% to 34% on average) across
subject classes. This is especially true when using the weaker form
of RTP. In [36], RTP was compared to random testing. The study
concluded that the RTP strategy is reasonably effective at detecting
faults; 88% of the faults were detected, as compared to 69% for ran-
dom testing. Moreover, their results showed that RTP left certain
types of faults undetected, and like in [13], it was suggested that
by augmenting RTP with category-partition (CP) testing, the
fault-detection can be enhanced, although at an increase in cost
that must be taken into account. Several other studies also focus
on combining test strategies; in [37,38], RTP was combined with
white-box testing, resulting in significantly better fault-detection.

A study by Briand et al. [39] was conducted that aimed at inves-
tigating how data-flow information could be used to improve the
cost effectiveness of RTP when more than one transition tree could
be generated. The results showed that data flow information was
useful for the selection of the most cost effective transition tree.
The RTP criterion was further studied by Briand et al. [40] with a
focus on how to improve the criterion’s fault-detection effective-
ness. They investigated how data flow analysis on OCL guard con-
ditions and operation contracts could be used to ‘‘further refine the
selection of a cost-effective test suite among alternative, adequate
test suites for a given state machine criterion’’ [40]. The results
suggested that data flow information in a transition tree could be
used to select the tree with the highest fault-detection ability.

The majority of the results found in existing SBT research are
based on studies where mutation operators have been applied to
small, non-industrial programs, like the well-known Cruise Control
system example [41], p. 595. With the exception of two studies
where only a small percentage of the seeded faults were real
[14,25], artificial faults were overwhelmingly used in the reported
testing strategy evaluations [12,13,36,42,43]. The few studies that
partially use realistic faults, e.g., [14,25], often fail to mention how
those faults were collected. As stated by Andrews et al. [24], a
problem when evaluating testing strategies is that real programs
with realistic faults are rarely available. As a consequence, little
is known about how such structured test approaches compare
when detecting realistic faults. When also considering the setting
of the experiment, only two studies [43,44] were executed in
industrial settings. Of these two studies, the first study [43] did
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not report the nature of the seeded faults, whereas the second
study [44] reported the use of mutation operators. The two studies
[14,25] that actually did report the use of realistic faults were con-
ducted in laboratory settings, and in those cases only 4/20 and 4/21
of the faults were real.

Very few studies have compared oracles within the context of
SBT; in fact, the study of Briand et al. [13] appears to be unique
in its empirical comparison of oracles within this particular con-
text. Although not being the sole focus of their study, the results
revealed statistically significant differences between the two ora-
cle strategies. They found that the precise oracle had significantly
stronger fault-detection abilities than the state-invariant oracle
but led to increased cost: Since less attributes are checked, the
state-invariant oracle required less resources during both develop-
ment and execution. Fault-detection went from 50% when only
checking the state invariant to 72% when also checking contract
assertions.

Reducing the test-suite size by abstracting the test model is yet
another area of related work where there is a lack of research with-
in the context of SBT. Several studies, in other contexts, focus on
lowering the cost of testing by reducing the test suites while pre-
serving the original coverage, but at the expense of fault-detection
ability. Heimdahl and George [26] found that the size of the spec-
ification-based test suites can be dramatically reduced but that, as
a result, the fault detection of the reduced test suites is adversely
affected. Wong et al. [27] investigated the effect on fault-detection
of reducing the size of a test suite while keeping block and all-uses
coverage constant. They found that the reduction in effectiveness
was not significant, even for the most difficult faults, which sug-
gests that the minimization of test suites can reduce the cost of
testing at a slightly reduced level of fault-detection effectiveness.
Similar to the work in [26], we investigated the fault-detection
effectiveness of reduced test suites, but based on a different idea.
Whereas test-reduction techniques are based on removing tests
that do not contribute to an increase in coverage for the test suite,
this paper focuses instead on abstracting the test model itself. This
means that not only are the number of test cases in the test suites
reduced, but the detail level in the test model is reduced as well,
thus reducing its construction and maintenance cost.

The final aspect of SBT is sneak-path testing. Mouchawrab et al.
[38] conducted a series of controlled experiments for the purpose
of investigating the impact of RTP on cost and fault detection when
compared to structural testing. The study was a replication of the
experiment in [13] where one of the findings was that not testing
sneak-path transitions resulted in many faults not being detected.
Hence, in the replication experiments they extended the testing
strategy by complementing the RTP criterion with sneak paths,
as recommended by Binder [32]. The results showed that sneak-
path testing clearly improved fault detection. The collected data
thus strongly suggests complementing RTP with sneak-path test-
ing. No other empirical study evaluates the testing of sneak paths
and there are no such studies in realistic industrial contexts. Part of
the study reported here, regarding sneak-path testing, has been
previously published [45].

To conclude, though some reported research has evaluated
state-based coverage criteria, the focus has mostly been directed
towards fault-detection effectiveness based on artificial seeded
faults (e.g., with mutation operators) and was not concerned with
the cost of such testing. In addition, the majority of the results are
based on studies involving small academic programs. The few
studies that partially use realistic faults [14,25] tend not to de-
scribe how those faults were collected. Our study complements
and extends existing research on the cost effectiveness of SBT by:

! using an industrial safety–critical control system as subject,
! using real faults (collected from an industrial field study),

! comparing six state-based coverage criteria,
! comparing two test oracles at different levels of precision,
! studying the impact of removing details from the test model,

and
! applying sneak-path testing.

3. Case study design

This section describes how our empirical evaluations on the
cost effectiveness of state-based testing (SBT) were carried out.
Studying multiple aspects within the same context makes this a
single embedded case study [29].

3.1. Research objectives

The main purpose of this study was to investigate the influence
of four aspects of cost effectiveness in SBT: six state-based cover-
age criteria, two different oracles, two test models at different lev-
els of detail, and sneak path-testing.

The following research questions were addressed:

! RQ1: What is the cost and effectiveness of the following state-
based coverage criteria: all transitions (AT), all round-trip paths
(RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of
length 3 (LN3) and paths of length 4 (LN4)?
! RQ2: How does varying the oracle affect cost and effectiveness?
! RQ3: What is the influence of the test model abstraction level on

cost and effectiveness?
! RQ4: What is the impact of sneak-path testing on cost and

effectiveness?

3.2. Case and subject selection

The case study was conducted within the context of a software
process improvement project at ABB. ABB is a global company that
operates in approximately 100 countries with 135,000 employees.
Its primary business focus is automation technologies, for which
the company develops software and hardware.

The current project was initiated to investigate which UML dia-
grams may be beneficial to ABB, especially during the process of
going from the specification to the implementation phase, and
for improving testing procedures. It provided a unique opportunity
to assess the usage of precise, state machine-driven UML modeling
and to evaluate state-based testing in a realistic safety–critical
development environment.

In order to satisfy safety standards (e.g., EN 954 and IEC 61508)
and enhance the safety–critical behavior of their industrial ma-
chines, ABB developed a new version of a safety–critical system
for supervising industrial machines: the safety board. The safety
board can safeguard up to six robots by itself and can be intercon-
nected to many more via a programmable logic controller (PLC). It
was implemented on a hardware redundant computer in order to
achieve the required safety integrity level (SIL). The focus of this
study is a part of this system, called the Application Logic Control-
ler (ALC). The main function of this module is to supervise the sta-
tus of all safety-related components interacting with the machine,
and to initiate a stop of the machine in a safe way when one of
these components requests a stop or if a fault is detected. It should
also interface with an optional safety bus to enable a remote stop
and a reliable exchange of system status information. The system is
configurable with respect to which safety buses the system can
interact with. This ALC subsystem was chosen for the study as it
exhibits a complex state-based behavior that can be modeled as
a UML state machine. Complemented by constraints specifying
state invariants, the state machine is the main source in the pro-
cess of deriving automated test oracles.
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3.3. Data collection procedures

To measure the cost and effectiveness of SBT, four surrogate
measures were used, inspired by the study of Briand et al. [13].

Cost is measured in terms of:

! Test-suite preparation time. The time spent on generating the
test tree, generating the test suite, and building the test suite.
! Test-suite execution time. The time spent on executing the test

suite, as measured by completion time minus the time where
inputs from external devices are simulated.
! Test-suite size. The number of test cases in a test suite.

Effectiveness is measured by:

! Mutation score. The number of non-equivalent mutants killed
divided by the total number of non-equivalent mutants.
! Timing data was collected by running the experiment on a Win-

dows 7 machine with an Intel(R) Core(TM)2 Duo CPU P9400 @
2.4 GHz processor, and with 2.4 GB memory. Note that time is
measured in seconds.

A Technical Requirements Specification, developed by the busi-
ness unit in cooperation with ABB scientists, was the starting point
for developing a common understanding of the system. The mod-
eling was a cooperative activity between the researchers and
ABB. Each modeling activity was closely monitored. The control
system was implemented as a joint effort between ABB and Simula
researchers. The testing, however, was exclusively performed by
the first author of this paper.

4. Case study execution

Motivated by the lack of extensible and configurable model-
based testing (MBT) tools, Ali et al. [28] proposed an MBT tool, the
TRansformation-based tool for UML-baSed Testing (TRUST), to be
used in conjunction with other tools. The software architecture
and implementation strategy of TRUST facilitated its customization
for different contexts by supporting configurable and extensible
features such as input models, test models, coverage criteria, test
data generation strategies, and test script languages.

The remainder of this section describes how data collection was
conducted. The main activities include the preparation of test mod-
els (Section 4.1), collecting fault data for creating mutants (Sec-
tion 4.2), extending and configuring the testing tool TRUST
(Section 4.3), and the generation and execution of test suites
(Section 4.4).

4.1. The preparation of test models

The original model was tested using TRUST and the round-trip
path (RTP) criterion. However, due to limitations in TRUST, some
adjustments had to be made to the original model before it could
be used as an input for TRUST. Since the flattening component does
not support transitions that cross state borders, these transitions
had to be re-modeled to and from the super-state edges. This also
required adding initial states, entry points, and exit points in sev-
eral of the super states. The state-machine flattener does not sup-
port multiple events on a single transition. Such transitions were
thus transformed to one transition per event. Note that the applied
changes did not affect the functionality as originally modeled.

The implemented flattening algorithm is a stepwise process
that allows the user to modify the UML model at several points
during the transformation towards the flattened version. The first
step in the flattening process is to search all nested levels for

submachine states and transform these into a set of simple com-
posite states. Next, all simple composite states with one region
are transformed to a set of simple states or orthogonal states. If
there are orthogonal states present in the model, these may now
be transformed to simple composite states. Finally, the simple
composite state(s) created in the previous step are transformed
to a set of simple states. The result is a state machine consisting
of an initial state, simple state(s) and possibly a final state. The flat-
tening follows a set of transformation rules implemented in Ker-
meta [46]. The key aspects in these rules address (1) how to
combine concurrent states, and (2) how to redirect transitions.
Interested readers may consult [47] for more detailed information
about the flattening algorithm and its corresponding transforma-
tions and implementation.

After executing the flattening transformation and removing
unreachable state combinations due to conflicting state invariants,
the flattened state machine consisted of 56 states and 391 transi-
tions, mostly guarded. TRUST was executed with the configuration
values presented in Table 1 and the flattened state machine de-
scribed in Table 2 as an input. In this case, TRUST was configured
for the RTP criterion, applied on a test tree, which conforms to
the test tree metamodel presented in [28].

The test suite was then executed on what is considered to be a
‘‘correct’’ version of the code, i.e., one that does not cause the test
suites to detect failures. Results were analyzed in order to remove
actual infeasible test cases and to resolve infeasible transitions
caused by unsatisfied guard conditions due to externally controlled
variables. The latter issue was handled by providing an environ-
ment which enables transitions to be fired, and then re-generating
the concrete test cases. An example of such an externally con-
trolled variable is the enable device, which is managed by the oper-
ator and used for starting and stopping the movement of industrial
machines.

Furthermore, even when a system is carefully specified and
implemented, there is always the risk of introducing discrepancies
between the specification and the implementation. Minor incon-
sistencies between the specification and the original version of
the SUT were found during RTP testing – these inconsistencies,
however, had to be resolved in order to run the tests without errors
before moving on with the study.

To enable the evaluation of SBT strategies, a field study was
planned for the purpose of collecting real fault data to be used in
the generation of realistic mutants. For this reason, the original
version of the system was modified to include a fourth operation
mode: the ExtraSlow mode. Figs. 1 and 2 illustrate the change at
a high level.

The UML state machine consisted of one orthogonal state with
two regions. Enclosed in the first region are two simple states
and two simple-composite states. The simple-composite states
contain two and three simple states. The second region encloses
one simple state and four simple-composite states that again con-
sist of, respectively, two, two, two, and three simple states. This
adds up to one orthogonal state, 17 simple states, 6 simple-com-
posite states, and a maximum hierarchy level of 2. The unflattened
state machine contained 61 transitions. Having both concurrent

Table 1
Configuration parameters of TRUST.

Parameter Value

Input model UML2.0 state machine
Test model Test tree for round trip paths
Coverage criterion All round-trip paths
Oracle State invariant + state pointer
Test scripting language C++
Test data generation technique Random data generation
OCL evaluator EOS
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and hierarchical states, the state machine had to be flattened
before being used as an input for test case generation. For this pur-
pose, the state-machine flattening component of TRUST was used.
On the outset, the flattened model consisted of 82 states and 508
transitions, of which 193 were guarded. However, as addressed
above, the flattened model contained infeasible state combinations
and transitions, as the current version of the state-machine flat-
tener does not automatically remove these. The user can specify
preferences in the provided Kermeta [46] transformation. The out-
come of the transformation is a model where these combinations
are excluded. After removing infeasible transitions, due to both

incompatible state invariants (12 state combinations, 145 transi-
tions) and guards that cannot evaluate to true (14 transitions),
the state machine included 68 simple states (excluding initial
and final state) and 349 transitions, of which 107 were guarded.
The characteristics of the unflattened and flattened UML state ma-
chines are summarized in Table 3.

To observe the effect of having a less precise test model on the
cost effectiveness of the testing strategies, the complete test model
was modified. By removing one level in the state hierarchy, the
model was abstracted to generate a less precise but correct test
model. The contents of every simple composite state were

Table 2
A features summary of the hierarchical scale of state machines – the original version
of the SUT.

State-machine feature Unflattened Flattened

Maximum level of hierarchy 2 –
Number of submachines 0 –
Number of simple-composite states 5 –
Number of simple states 14 56
Number of orthogonal states 1 –
Number of transitions 53 391

Fig. 1. The Mode region in the SUT prior to change task.

Fig. 2. The Mode region in the SUT after implementation of the change task.

Table 3
A features summary of the hierarchical scale of state machines – the modified version
of the SUT.

State-machine feature Unflattened Flattened

Maximum level of hierarchy 2 –
Number of submachines 0 –
Number of simple-composite states 6 –
Number of simple states 17 68
Number of orthogonal states 1 –
Number of transitions (guarded) 61 (17) 349 (107)
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removed. Note that, from now on, this model is referred to as the
abstract model.

Raising the abstraction level prompted questions regarding how
to set the inclusion criterion for transitions connected to those
modified super-states. In the end, only transitions that were
sourced or targeted in the edge of the super-state were kept (see
Fig. 3). This means that the transitions that were targeted in entry
points or sourced in exit points contained in the super-states were
deleted. This is due to the fact that those transitions do not capture
a common behavior to all sub-states of that super-state; such
behavior is only common to those sub-states that have incoming
transitions to a particular entry point. The same regards outgoing
transitions from exit points. Consequently, parts of the super-state
behavior are overlooked. Transitions sourced in the edge of a super
state, on the other hand, concern all sub states.

In order to potentially capture more of the SUT’s behavior, the
transitions sourced in exit points belonging to the super-state
could also be kept. This means that more of the possible behavior
is tested, although with an increased number of infeasible test
cases due to unsatisfied guard conditions. This is particularly true
when the guard contains state variables that are specific to the re-
moved sub-states. Although not impossible, it is difficult to know
upfront whether or not the guard can be satisfied. It would be
applicable if an analysis of the required path was implemented
in order to satisfy the guard.

The outcome of applying the previously described abstraction
approach was a UML state machine consisting of an initial state,
a final state, two transitions, and one orthogonal state with two re-
gions. The first region contained one initial state, five simple states
and 14 transitions, whereas the second region contained one initial
state, one final state, four simple states and 15 transitions (of
which seven were guarded).

Due to the concurrent state, this model also had to be flattened.
The flattened version resulted in one initial state, one final state, 25
simple states, and 123 transitions (of which 35 were guarded).
After removing four incompatible states and 37 infeasible transi-
tions from the flattened version, the abstract model was left with
one initial state, 21 simple states, one final state and 86 feasible
transitions, of which 28 were guarded. The characteristics of the
unflattened and flattened UML state machines are summarized in
Table 4.

The SUT was implemented according to the extended state-de-
sign pattern [31]. The extended state-design pattern provides a
template on how to implement a UML state machine in such a
way as to improve traceability from the model to the implementa-
tion and facilitate change. It extends the original state pattern by
specifying how to implement state and transition actions. The ex-
tended state-design pattern localizes state-specific behavior in an
individual class for each state and, hence, puts all the behavior
for that state into one class. The pattern allows a system to change
its behavior when its internal state changes. This is accomplished
by letting the system change the class representing the state of

the object. Fig. 4 shows an abstracted version of the class diagram
of the SUT. It consists of a context class ApplicationLogicCon-
troller (ALC) that represents the system controlling the ma-
chine. The ALC is assigned all responsibilities for handling the
state behavior. The ALC is always in two concurrent states. In the
Mode region, the ALC can be in IdentifyingMode, Auto, Manual,
or ManualFullSpeed (ManualFS); in the DriveEnable region,
the ALC can be in Init, Enabled, Disabled or Halt. The context
class represents the system and its interface with the external
environment. The ALC will act differently depending on what state
it is in. Two abstract classes, Mode and DriveEnable, represent
the states of the ALC, and declares interfaces common to all classes
that represent different operational states. The subclasses of the
abstract classes implement state-specific behavior, which means
that they provide operation implementations that are specific to
every state (and possibly empty) of the ALC. Experiences and les-
sons learned from applying the extended state design pattern can
be found in [48]. The resulting C++ code for the SUT consisted of
26 classes and 3372 LOC (1227 h, 2145 cpp) (without blank lines).

4.2. Collecting fault data for creating mutants

For the purpose of evaluating the cost effectiveness of SBT and
to increase the external validity of the results, actual fault data
was collected in a global field study to generate mutated versions
of the SUT. The field study was conducted at ABB’s offices in
Västerås, Baden, and Shanghai. Having varied UML and domain
knowledge, 11 ABB engineers were asked to implement a change
task to the modified version of the SUT. The change task was sug-
gested by ABB as a realistic modification. They were instructed to
modify both the model and code. Participants were instructed to
work strictly individually. One researcher supervised the sessions.

The maintenance task itself was initially suggested at a high le-
vel by ABB; however, it was defined and split into six sub tasks by
the researchers, and finally approved by the company. The mainte-
nance task consisted of adding an extra gear or mode, ExtraSlow-
Speed, in which industrial machines may be operated. The
subjects attended an introductory session where the extended
state-design pattern was explained. They were also provided with
both textual and graphical documentation, in addition to a manual
on how to apply the design pattern.

A version of the model and code, representing the SUT after the
implementation of the maintenance task, was developed by one re-
searcher and tested with each of the coverage criteria within the
focus of this study in order to verify its correctness. The faults col-
lected from the field study, described below, were inserted into
this correctly modified version of the SUT to generate mutants.

Manual code inspections of the ten1 solutions produced in the
field study were used to collect actual faults. In total, 26 faults were
detected during the code inspections. This is a low number of faults

Fig. 3. Removing details from the test model.

Table 4
A features summary of the hierarchical scale of state machines – the abstract version
of the SUT.

State-machine feature Unflattened Flattened

Maximum level of hierarchy – –
Number of submachines – –
Number of simple-composite states – –
Number of simple states 25 21
Number of orthogonal states 1 –
Number of transitions (guarded) 123 (35) 86 (28)

1 The field experiment originally had 11 participants. However, as one of the
participants made no modifications to the code, that particular solution was
considered as irrelevant for this study.
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compared to artificial mutation testing. However, real faults are
rarely used in the reported testing strategy evaluations. As a conse-
quence, little is known about how such structured test approaches
compare in detecting real faults. In this paper, however, the compar-
ison is exclusively based on real faults. These faults were introduced
in both the model and code or only the latter. Note that because the
objective was to compare the fault-detection abilities of the testing
criteria, it was crucial that the seeded faults did not cause compila-
tion errors. This means that only logical faults that could not be de-
tected by the compiler could be selected. The extracted fault data
were used to create 26 faulty versions (mutants) of the code by seed-
ing one fault per program. The faults in the source code reflected the
following modeling errors:

! Missing transitions (Fig. 5): An expected guarded transition trig-
gered by a completion event from State A to State B was
missing from the model. One of the participants only accounted

for the transition that was explicitly triggered by the e1()
event. The participant did not consider the transition that
would fire if g1 was already false.
! Additional transitions (Fig. 6): Another participant erroneously

added transitions from State C not only, as specified, to State
A, but also to State B and State D, and vice versa.
! Guards that were not correctly updated (Fig. 7): A participant

added a clause in the guard on the transition from State G to
State H so that a transition would be fired only if the mode
is in State C or the speed is extraSlow in the concurrent
region.
! Guards that were modified which should not have been changed

(Fig. 8): In one of the erroneous versions, the event handling
operation e2()’s guard was modified so that the state machine
would transition from State I to State J only if the concur-
rent region was in State C.

Fig. 4. Class diagram of the ALC.

Fig. 5. Missing guarded transition. Fig. 6. Additional transitions to and from State C.
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! Erroneous on-entry behavior (Fig. 9): The on-entry behavior of
State K was introduced with an error; the sub states, State
L and State M, were updated with the same values for state
variables. The only common value, however, should have been
variable x. Variable y should have been given different values
in the two sub states.
! Incorrect state invariants: State variable x was missing from
State C’s state invariant.
! Missing on-entry behavior: OnEntry() was missing for State C

(super-state).

Among these faults, eleven were sneak paths. To detect sneak
paths, the model should reflect the preferred behavior of the sys-
tem when exposed to unexpected events. At this stage, our model
had no support for the handling of such unexpected behavior.
Hence, as sneak paths could not be caught by any conformance test
suite generated from the model, only 15 out of 26 mutant pro-
grams were detectable by the conformance test suites (AT, RTP,
ATP, LN2, LN3, and LN4).

4.3. Extending and configuring the testing tool TRUST

In order to use the model-based tool TRUST, it had to be ex-
tended and configured to meet the requirements and conditions
of the investigation of this study. TRUST was extended to support
the relevant coverage criteria and to support two oracles. More-
over, the concrete test-case generator was extended for producing
C++ code, in addition to providing a test environment that facili-
tates the selection of values for externally controlled variables in
guard conditions. Finally, TRUST was extended with support for
sneak-path testing.

4.4. Generation and execution of test suites

TRUST was used to automatically generate executable test
suites by model transformations. The prepared test model, previ-
ously introduced as the modified version of the SUT, was used as
an input model for TRUST. As the state-based criteria are defined
for finite state machines, a prerequisite for generating the test
suites was to use an input state machine without concurrency
and hierarchy. The first step in TRUST was thus to flatten [32]
the test model, i.e., remove hierarchy and concurrency from the
model, as previously described. The flattened state machine was
then transformed into test trees by a set of ATL [49] transformation
rules. To create the abstract test cases, in the shape of a test tree,
each of the algorithms for obtaining test suites satisfying the cov-
erage criteria under study were applied to the flattened state
machine.

To illustrate the scope of the criteria, the following sequences of
transitions are generated from the example model shown in
Fig. 10:

! AT: {(t1, t2, t6); (t1, t2, t3, t4); (t1, t2, t3, t5)}
! RTP: {(t1, t2, t6); (t1, t2, t3[x = 2], t4); (t1, t2, t3[x = 2], t5); (t1,

t2, t3[y = 0])}
! RTP weak: {(t1, t2, t6); (t1, t2, t3, t4); (t1, t2, t3, t5)}
! ATP: {(t1, t2, t6, t2); (t1, t2, t3, t4); (t1, t2, t3, t5)}
! LN2: {(t1,t2, t6); (t1, t2, t3)}
! LN3: {(t1, t2, t3, t4); (t1, t2, t6, t2); (t1, t2, t3, t5)}
! LN4: {(t1, t2, t3, t4); (t1, t2, t3, t5, t2); (t1, t2, t6, t2, t6); (t1, t2,

t6, t2, t3)}

The generated test trees were input to the next transformation,
which generated executable test cases. In this transformation,

Fig. 7. Incorrect guard on transition from State G to State H.

Fig. 8. Incorrect guard on transition from State I to State J.
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TRUST created concrete test cases using MOFScript2 [50], which
took the flattened state machine in addition to the generated test
tree as an input. The MOFScript transformation traverses the test
tree (e.g., the transition tree) to obtain the abstract test cases and
transforms them to concrete (executable) test cases, which are writ-
ten in a test-scripting language (in our study, we used C++). Each
path in the tree produces one test case. That is, an abstract test case
consists of a sequence of nodes and edges. Nodes are mapped from
states in the state machine and states are defined by state invariants,
which are OCL constraints serving as test oracles. An edge contains
all the information related to the trigger including event (e.g., an
operation call or a signal reception), a guard, and an effect from
the state machine’s transitions. A separate C++ file was created for
each test case. A main C++ file was generated where each of the test
cases were invoked. Each test case was invoked on a new instance of
the SUT.

The test suites were first executed on what was considered a
‘‘correct’’ version of the code; that is, one that does not cause the
test suites to detect failures. The results were then analyzed in or-
der to remove actual infeasible test cases and to resolve infeasible
transitions caused by unsatisfied guard conditions due to exter-
nally controlled variables. The latter issue was handled by provid-
ing an environment which enables the transitions to be fired, and
then re-generating the concrete test cases. The environment is con-
trolled by the test-data values. It is possible to generate several
concrete test cases from an abstract test case by using different
test-data values. There are many possible approaches for genera-
tion of test data [51,52], which are applicable in different situa-
tions. TRUST was extended to support intelligent test-data
generation; more precisely to provide test data that satisfy guard
conditions. Automated test-data generation has shown good
results for identifying dynamic test data (e.g., [53]). In this study,
however, the dynamic test-data generation was hard coded due

to limited time resources. When the test suites executed success-
fully on the ‘‘correct’’ version, they were then run on the mutant
versions of the SUT.

A batch file was created for each test strategy to automate the
build, execution, and time data collection when executed on the
correct and mutated programs. The version of the SUT to be exe-
cuted was copied into a Visual Studio project folder. The project
was then rebuilt and executed. One result text file was created
for each test strategy. The result file contains the results of the cor-
rect version and the 26 mutants. Note that the conformance test
suites were only run on the mutants that were not based on sneak
paths. The rationale for this decision is simply that it is impossible
to detect sneak paths with conformance test suites.

In summary, the following generation and execution steps were
automated:

1. Flatten input state machine.
2. Select test adequacy criterion.
3. Construct abstract test cases in the form of a test tree. The algo-

rithms used to traverse the state machine were described
previously.

4. Select oracle.
5. Traverse the tree and select test data to generate concrete test

cases. One test suite is generated per tree.
6. Build and execute the test suite on the correct version.
7. Ensure that the test suite is executed with no errors.
8. Then build again and execute the test suite on each of the

mutant programs.
9. Analyze test results provided by the selected test oracle on all

mutants.

For certain coverage criteria, like AT, RTP, and ATP, the genera-
tion of test trees from state machines is not deterministic, since
several test trees could possibly satisfy the criterion. The structure
of the tree depends on the sequence of the selected outgoing tran-
sitions when traversing the state machine as illustrated by Figs. 11
and 12. There are two types of dissimilarities: symmetric and
semantic. Only the latter type has impact on the test results. The

Fig. 9. Erroneous on-entry behavior that set state variables.

Fig. 10. Example state machine.

2 A transformation language that generates text from models by following model-
to-text transformation rules. Fig. 11. Example state machine.
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trees in Fig. 12 were generated by following the round trip path cri-
terion using breadth first traversal. Even though the four trees dif-
fer symmetrically, Tree 1 is semantically equal to Tree 3 and Tree 2
is semantically equal to Tree 4. This implies that for example Tree 1
differs semantically from both Tree 2 and Tree 4. Thus, due to pos-
sible differences in fault-detection power, the results of executing
different test suites that fulfill the same test criterion may differ.
Such random variations in the results were accounted for by
repeating the experiment 30 times. Traditionally, in many fields
of science, n = 30 has been a common rule of thumb to enable sta-
tistical testing [54]. We also complement our tests for significance
with measures for effect size. Thus, 30 different trees were created
using a random selection of outgoing transitions from states to
generate distinct test suites. The test suites were obtained by tra-
versing each of the 30 test trees and covering all paths. By selecting
without a replacement from the population of all possible trees
that achieves each of the criteria, only trees distinct from already
selected trees were added to the selection.

5. Results

Tables 5–8 report the obtained results for each combination of
coverage criteria, test oracle, and test model. The tables present
descriptive statistics for each of the surrogate measures on cost
and effectiveness: test-suite size (Table 5), test-suite preparation
time (Table 6), test-suite execution time (Table 7), and mutation
score (Table 8). Note that the state invariant oracle applied to-
gether with the state pointer oracle is referred to as oracle O1;
the state pointer oracle applied in isolation is referred to as oracle
O2.

The size of the sneak-path test suite is equal to the number of
states in the SUT (68 simple states in the complete model and 21
simple states in the abstract model). Tables 9 and 10 show the time
spent on preparing and executing a selection of test cases from the
sneak-path test suite. We only measured preparation and execu-
tion time for the minimum number of sneak-path test cases that
were required in order to kill all mutants. Table 11 shows realistic
estimates for the entire sneak-path test suites. All eleven sneak
path faults were detected by the sneak path test suite generated
from the complete model. Due to an infeasible test case, the execu-
tion of the sneak-path test suite generated from the abstract model
detected 10 out of 11 sneak paths.

6. Analysis

The analysis is divided into four parts: Sections 6.1–6.4 address
each of the four research questions. For each research question, we

present statistical tests on the data for AT, RTP, and ATP; and an
analysis of cost and effectiveness. We use the bA12 statistic by Var-
gha–Delaney [55] to evaluate the effect size. Its range from 0 to 1 is
divided in three categories: Small, medium, and large. Values of bA12

such that 0:36 < bA12 6 0:44 or 0:56 6 bA12 < 0:64 indicate small ef-
fect size. Values of bA12 such that 0:29 < bA12 6 0:36 or
0:64 6 bA12 < 0:71 indicate medium effect size. Values of bA12 such
that 0 6 bA12 6 0:29 or 0:71 P bA12 6 1 indicate large effect size. A
value of 0.5 indicates no difference between the populations.

6.1. RQ 1: What is the cost and effectiveness of the state-based
coverage criteria all transitions (AT), all round-trip paths (RTP), all
transition pairs (ATP), paths of length 2 (LN2), paths of length 3 (LN3)
and paths of length 4 (LN4)?

In this section, we compare the cost effectiveness of six state-
based coverage criteria: all transitions (AT), all round-trip paths
(RTP), all transition pairs (ATP), paths of length 2 (LN2), paths of
length 3 (LN3), and paths of length 4 (LN4). The state-invariant ora-
cle was applied together with the state-pointer oracle. Also note
that test cases were generated from a complete test model.

6.1.1. Statistical tests
Tables 12–14 show the results from the paired Wilcoxon

signed-rank tests that were performed to test for statistically sig-
nificant differences in the 30 replications of AT, RTP, and ATP.
The purpose of the tests was to reject the following null
hypotheses:

H0-cost: There are no significant differences in cost when applying
the testing strategies AT, RTP, and ATP on the complete model
when combined with oracle O1.

H0-eff: There are no significant differences in effectiveness when
applying the testing strategies AT, RTP, and ATP on the
complete model when combined with oracle O1.

The statistical tests executed on preparation and execution time
resulted in significantly different results – ATP spent significantly
more time on both preparing and executing the test suites than
AT and RTP. Effect sizes of the differences in preparation and exe-
cution time are also provided. Tables 12 and 13 present large effect
sizes for all tests regarding costs; indicating practically significant
differences in cost among test strategies. No significant differences
were found in terms of mutation score though. Both RTP and ATP
killed all mutants. AT killed all mutants in 29 out of 30 test suites
– the final test suite killed 14 out of 15 mutants. The effect size of
0.5 shows a 50% probability of either strategy performing better.

Fig. 12. Possible trees generated from Fig. 11.
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In short, ATP costs more than AT, which again costs more than
RTP. Regardless of these differences, however, the three strategies
yielded a similar mutation score. Thus, RTP can be considered to be
the most cost-effective strategy when using the complete model
and the combination of the state-invariant and state-pointer
oracles.

Based on the obtained results, the null hypothesis was rejected
for the surrogate measures for cost. However, no evidence was

found to reject the null hypothesis with respect to effectiveness
(mutation score).

6.1.2. Cost effectiveness analysis
This section focuses on the relationship between cost and effec-

tiveness. Each of the surrogate measures of cost and effectiveness
has been depicted in Fig. 13: Dark colors indicate high values; light
colors represent low values. We observed that five of the criteria

Table 5
Test-suite sizes.

Coverage
criterion

Test
model

Oracle Test-suite
size total

Test-suite size
feasible

Infeasible test
cases (%)

Diff. between O1
and O2 (%)

Diff. between abstract and
complete (%) (O1)

Diff. between abstract and
complete (%) (O2)

AT Complete O1 166 166 0 0 "89.8 "80.1
O2 166 166 0

Abstract O1 33 17 48.5 "48.5
O2 33 33 0

RTP Complete O1 299 299 0.0 0 "77.9 "70.2
O2 299 299 0.0

Abstract O1 89 66 25.8 "25.8
O2 89 89 0

ATP Complete O1 1425 1425 0 0 "86.5 "79.2
O2 1425 1425 0

Abstract O1 301 192 36.2 "35.1
O2 301 296 1.7

LN2 Complete O1 27 27 0 0 "14.8 "7.4
O2 27 27 0

Abstract O1 25 23 8.0 "8.0
O2 25 25 0

LN3 Complete O1 143 143 0 0 "29.4 "14.0
O2 143 143 0

Abstract O1 123 101 17.9 "17.9
O2 123 123 0

LN4 Complete O1 764 764 0 0 "45.7 "23.6
O2 764 764 0

Abstract O1 585 415 29.1 "28.9
O2 585 584 0.2

Table 6
Descriptive statistics – preparation time.

Coverage
criterion

Oracle Model Min
(s)

Q1 (s) Mean
(s)

Median
(s)

Q3 (s) Max
(s)

St.
dev.

N Diff. between
abstract and
complete (%)

Diff. between O2
and O1 (%)
(abstract)

Diff. between O2
and O1 (%)
(complete)

AT O1 Abstract 173 180 222 192 210 972 143 30 "94.5 "3.8 "7.0
Complete 2506 2763 3995 3013 3665 15,939 3264 30

O2 Abstract 168 175 213 185 202 965 143 30 "94.3
Complete 2249 2474 3715 2766 3394 15,663 3280 30

RTP O1 Abstract 182 184 204 193 210 309 30 30 "61.6 "4.7 0.2
Complete 484 512 531 525 545 607 28 30

O2 Abstract 179 184 194 189 200 250 17 30 "63.5
Complete 476 492 533 523 559 675 51 30

ATP O1 Abstract 1089 1105 1115 1111 1123 1150 14 30 "96.1 2.3 "0.6
Complete 28,377 28,576 28,819 28,797 29,028 29,398 273 30

O2 Abstract 1088 1097 1141 1116 1161 1368 64 30 "96.0
Complete 28,305 28,409 28,641 28,504 28,787 29,548 345 30

LN2 O1 Abstract 83 83 83 83 83 83 – 1 "34.1 1.2 0.0
Complete 126 126 126 126 126 126 – 1

O2 Abstract 84 84 84 84 84 84 – 1 "33.3
Complete 126 126 126 126 126 126 – 1

LN3 O1 Abstract 315 315 315 315 315 315 – 1 "38.1 "1.9 1.4
Complete 509 509 509 509 509 509 – 1

O2 Abstract 309 309 309 309 309 309 – 1 "40.1
Complete 516 516 516 516 516 516 – 1

LN4 O1 Abstract 3943 3943 3943 3943 3943 3943 – 1 "25.5 1.3 3.8
Complete 5295 5295 5295 5295 5295 5295 – 1

O2 Abstract 3993 3993 3993 3993 3993 3993 – 1 "27.3
Complete 5494 5494 5494 5494 5494 5494 – 1
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provided a good mutation score – LN2 was the weakest. Looking at
the cost for each strategy, ATP stands out with its high values for all
cost measures. RTP and LN3 performed quite similarly. AT had the
second highest cost, but a similar effectiveness to that of ATP, RTP,
and LN4.

Despite killing all mutants, ATP is clearly the most expensive
criteria to prepare. On the other extreme, LN2 has the lowest costs,
but the fault-detection ability is correspondingly poor. There are
significant differences regarding costs, e.g., preparation time versus
execution time, between AT and RTP. Preparing the AT test suites

Table 7
Descriptive statistics – execution time.

Coverage
criterion

Oracle Model Min
(s)

Q1
(s)

Mean
(s)

Median
(s)

Q3
(s)

Max
(s)

St.
dev.

N Diff. between
abstract and
complete (%)

Diff. between O2
and O1 (%)
(abstract)

Diff. between O2 and
O1 (%) (complete)

AT O1 Abstract 29 42 64 57 86 129 27 30 "97.4 "73.8 "83.1
Complete 1765 2108 2455 2377 2785 3617 469 30

O2 Abstract 9 12 17 16 19 37 7 30 "95.9
Complete 293 358 415 417 473 571 71 30

RTP O1 Abstract 52 62 72 74 76 100 11 30 "85.2 "69.4 "80.5
Complete 341 460 489 504 524 607 54 30

O2 Abstract 14 19 22 21 23 47 7 30 "76.9
Complete 80 88 95 97 101 119 9 30

ATP O1 Abstract 215 342 395 398 448 528 75 30 "88.2 "70.6 "83.0
Complete 2607 2972 3341 3381 3669 3978 429 30

O2 Abstract 65 100 116 117 127 177 22 30 "79.6
Complete 429 493 569 547 654 773 101 30

LN2 O1 Abstract 16 16 16 16 16 16 – 1 "11.1 "68.8 "72.2
Complete 18 18 18 18 18 18 – 1

O2 Abstract 5 5 5 5 5 5 – 1 0.0
Complete 5 5 5 5 5 5 – 1

LN3 O1 Abstract 85 85 85 85 85 85 – 1 "37.5 "68.2 "79.4
Complete 136 136 136 136 136 136 – 1

O2 Abstract 27 27 27 27 27 27 – 1 "3.6
Complete 28 28 28 28 28 28 – 1

LN4 O1 Abstract 667 667 667 667 667 667 – 1 "21.5 "72.6 "79.6
Complete 850 850 850 850 850 850 – 1

O2 Abstract 183 183 183 183 183 183 – 1 5.8
Complete 173 173 173 173 173 173 – 1

Table 8
Descriptive statistics – mutation score.

Coverage
criterion

Oracle Model Min Q1 Mean Median Q3 Max St.
dev.

N Diff. between
abstract and
complete (%)

Diff. between O2
and O1 (%)
(abstract)

Diff. between O2
and O1 (%)
(complete)

AT O1 Abstract 0.000 0.200 0.262 0.200 0.200 0.800 0.168 30 "73.7 "71.3 "20.2
Complete 0.900 1.000 0.997 1.000 1.000 1.000 0.018 30

O2 Abstract 0.000 0.000 0.075 0.000 0.050 0.530 0.151 30 "90.5
Complete 0.730 0.800 0.795 0.800 0.800 0.800 0.018 30

RTP O1 Abstract 0.870 0.870 0.870 0.870 0.870 0.870 0.000 30 "13.0 "31.0 "20.0
Complete 1.000 1.000 1.000 1.000 1.000 1.000 0.000 30

O2 Abstract 0.600 0.600 0.600 0.600 0.600 0.600 0.000 30 "25.0
Complete 0.800 0.800 0.800 0.800 0.800 0.800 0.000 30

ATP O1 Abstract 0.867 0.867 0.867 0.867 0.867 0.867 0.000 30 "13.3 "27.2 "26.9
Complete 1.000 1.000 1.000 1.000 1.000 1.000 0.000 30

O2 Abstract 0.600 0.600 0.631 0.600 0.667 0.667 0.034 30 "13.6
Complete 0.600 0.730 0.731 0.730 0.730 0.800 0.035 30

LN2 O1 Abstract 0.267 0.267 0.267 0.267 0.267 0.267 – 1 "20.0 "100.0 "60.0
Complete 0.333 0.333 0.333 0.333 0.333 0.333 – 1

O2 Abstract 0.000 0.000 0.000 0.000 0.000 0.000 – 1 "100.0
Complete 0.133 0.133 0.133 0.133 0.133 0.133 – 1

LN3 O1 Abstract 0.867 0.867 0.867 0.867 0.867 0.867 – 1 "7.1 "30.8 "21.4
Complete 0.933 0.933 0.933 0.933 0.933 0.933 – 1

O2 Abstract 0.600 0.600 0.600 0.600 0.600 0.600 – 1 "18.2
Complete 0.733 0.733 0.733 0.733 0.733 0.733 – 1

LN4 O1 Abstract 0.867 0.867 0.867 0.867 0.867 0.867 – 1 "13.3 "30.8 "20.0
Complete 1.000 1.000 1.000 1.000 1.000 1.000 – 1

O2 Abstract 0.600 0.600 0.600 0.600 0.600 0.600 – 1 "25.0
Complete 0.800 0.800 0.800 0.800 0.800 0.800 – 1
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took slightly more time than RTP, but less time than LN4. Looking
at the execution time, Fig. 13 indicates that AT uses more time
compared to both RTP and LN4.

Finding 1: The results for cost and effectiveness indicate that
LN2 may be too weak as a testing strategy. The remaining
testing strategies killed all mutants (except from sneak
paths), but with varying costs. ATP was the most expensive
criterion and RTP the least expensive. In our case, RTP is
therefore the most cost-effective strategy, closely followed
by LN3.

6.2. RQ2: How does varying the oracle affect cost and effectiveness?

This section extends the comparison of state-based coverage
criteria by investigating the influence of varying the test oracle
on cost effectiveness. It is important to remember the difference
between the two oracles O1 and O2: the former checks the state
invariant in addition to the pointer to the current system state,
whereas the latter only checks the pointer to the current system
state. Test cases were generated from the complete test model.
Section 6.2.1 reports on the results of applying the statistical tests.
Section 6.2.2 presents an analysis of the cost and effectiveness.

6.2.1. Statistical tests
The paired Wilcoxon signed-rank test was executed on the col-

lected data when applying two different oracles on the complete
model. The purpose of the tests was to reject the following null
hypotheses:

H0-cost: There are no significant differences in cost when applying
two different oracles for each of the AT, RTP, and ATP criteria
on the complete model.

H0-eff: There are no significant differences in effectiveness when
applying two different oracles for each of the AT, RTP, and ATP
criteria on the complete model.

Varying the oracle shows that there were significant differences
in the preparation time for AT (medium effect size) and ATP (large
effect size); O1 required more preparation time than O2. For RTP,
on the other hand, no significant differences between the two ora-
cles were found. The execution time was significantly higher when
applying oracle O1. Moreover, the effect size was large. This pays
off, however, in that O1 consistently achieves a significantly higher
mutation score. In this case, the effect size is also large.

As we can see from the results of applying the statistical tests
(Tables 15–17), the null hypotheses were rejected for all strategies
regarding effectiveness, but not for cost. Note, however, that the
only null hypothesis regarding cost that could not be rejected
was related to RTP’s preparation time. For AT and ATP there are sig-
nificant differences in cost and effectiveness when applying two
different oracles on the complete model.

6.2.2. Cost effectiveness analysis
This section investigates the relationship between cost and

effectiveness for SBT when varying the oracle. Fig. 14 graphically
illustrates the relationship between cost and effectiveness by dis-
playing the surrogate measures for cost3, preparation and execution
time, and the surrogate measure for effectiveness, mutation score.

Table 9
Sneak-path test cases – preparation time and execution time – abstract test model.

Test case
executed on
mutant

Oracle Time
prepare
test case
(s)

Diff. O2
by O1
(%)

Time
execute
test case
(s)

Diff.
between O2
and O1 (%)

M18 O1 19 "10.5 4 "50.0
O2 17 2

M23 O1 19 "5.3 4 "50.0
O2 18 2

M24 O1 19 "10.5 4 "50.0
O2 17 2

M19 O1 21 "14.3 4 "50.0
O2 18 2

M25 O1 19 "10.5 3 "33.3
O2 17 2

M16 O1 19 "10.5 5 "60.0
O2 17 2

M17 O1 20 "10.0 4 "50.0
O2 18 2

M20 O1 20 "15.0 4 "50.0
O2 17 2

M21 O1 18 "5.6 4 "50.0
O2 17 2

M22 O1 19 "10.5 5 "60.0
O2 17 2

M26 O1 20 "10.0 5 "60.0
O2 18 2

Table 10
Sneak path test cases – preparation time and execution time – complete test model.

Executed
on mutant

Oracle Time
prepare
test case
(s)

Diff.
between O2
and O1 (%)

Time
execute
test case
(s)

Diff.
between O2
and O1 (%)

M23 O1 25 0.0 7 "71.4
O2 25 2

M18 O1 26 "11.5 4 "50.0
O2 23 2

M24 O1 26 0.0 4 "50.0
O2 26 2

M19 O1 25 "12.0 6 "66.7
O2 22 2

M25 O1 25 "12.0 4 "50.0
O2 22 2

M16 O1 28 "25.0 3 "33.3
O2 21 2

M17 O1 25 "16.0 4 "50.0
O2 21 2

M20 O1 23 "8.7 5 "60.0
O2 21 2

M21 O1 34 0.0 6 "66.7
O2 34 2

M22 O1 34 0.0 4 "50.0
O2 34 2

M26 O1 34 0.0 4 "50.0
O2 34 2

Table 11
Estimated preparation and execution times for sneak-path test suites.

Test model Oracle Preparation time
(estimate in
seconds)

Execution time
(estimate in
seconds)

Complete test
model

Oracle
O1

1885 315

Oracle
O2

1750 136

Abstract test model Oracle
O1

407 88

Oracle
O2

365 42

3 Recall that test-suite sizes were not influenced by varying the oracle when
generating tests from the complete test model; hence, this surrogate measure is not
addressed in this section.
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Obviously, an ideal situation would have been low values for cost,
but high mutation scores. However, this is not the case for all com-
binations of coverage criteria and oracles. In particular, we can ob-
serve from Fig. 14 that ATP combined with both oracles O1 and O2
is distant from the desired area. The results suggest that the muta-
tion score is negatively affected for all coverage criteria when using
the oracle O2.

One assumption to make is that a stronger coverage criterion
should have less need for a strong oracle as compared to weaker
coverage criteria having less code exercised. As we can see from
Fig. 14, a strong oracle combined with weaker coverage criterion
clearly improves fault-detection ability.

Even though the two oracles achieved rather similar levels of
cost in terms of preparation time (Fig. 14), results show that using
oracle O1 resulted in an overall higher cost when compared to ora-
cle O2. The highest impact was seen for LN2, followed by LN3. Lar-
ger differences were seen for cost when focusing on execution time
(Fig. 15); oracle O2 required less time than oracle O1.

Finding 2: The combination of coverage criterion and oracle
significantly impacts the cost (except from preparation
time for RTP) and effectiveness. Minor differences in
preparation time were observed when applying oracle O2.
Execution time, on the other hand, was significantly lower
when applying oracle O2 for all six strategies. The
significant amount of cost savings when using O2, however,
had an overall negative impact on effectiveness.

6.3. RQ 3: What is the influence of the test model abstraction level on
cost and effectiveness?

In Sections 6.1 and 6.2, we noted how six coverage criteria com-
pare when applied to a complete test model combined with two
oracles of different strengths. This section deals with the test mod-
el itself, especially with respect to the level of detail, and seeks to
provide answers as to how a less detailed test model in input to the
test case generation would affect cost effectiveness. The results are

collected by generating test suites and running tests with a model
where the contents of every composite state, in addition to the
belonging transitions, were removed (abstract model).

6.3.1. Statistical tests
Due to the independence between test paths for each of the 30

replications of AT, RTP, and ATP in the complete versus the abstract
test model, these cannot be considered to be pairs in statistical
tests. Hence, the independent samples Wilcoxon signed-rank test
was used for the statistical testing of differences. The purpose of
the tests was to reject the following null hypotheses:

Table 12
Paired Wilcoxon signed-rank test – preparation time.

H0 Oracle Model Measure p-Value bA12
Effect size Result Sign. diff. (CI)

AT = RTP O1 Complete Prep. time 1.86e"09 1 Large AT > RTP Yes
AT = ATP O1 Complete Prep. time 1.86e"09 1 Large AT < ATP Yes
RTP = ATP O1 Complete Prep. time 1.86e"09 0 Large RTP < ATP Yes

Table 13
Paired Wilcoxon signed-rank test – execution time.

H0 Oracle Model Measure p-Value bA12
Effect size Result Sign. diff. (CI)

AT = RTP O1 Complete Exec. time 1.82e"06 1 Large AT > RTP Yes
AT = ATP O1 Complete Exec. time 4.50e"06 0.086 Large AT < ATP Yes
RTP = ATP O1 Complete Exec. time 1.86e"09 0 Large RTP < ATP Yes

Table 14
Paired Wilcoxon signed-rank test – mutation score.

H0 Oracle Model Measure p-Value bA12
Effect size Result Sign. diff. (CI)

AT = RTP O1 Complete Mut. score NA 0.5 No effect AT = RTP No
AT = ATP O1 Complete Mut. score NA 0.5 No effect AT = ATP No
RTP = ATP O1 Complete Mut. score NA 0.5 No effect RTP = ATP No

Fig. 13. Preparation and execution time, test-suite size and mutation score.
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H0-cost: There are no significant differences in cost for the strategies
AT, RTP, and ATP when varying the level of details in the test
models.
H0-eff: There are no significant differences in effectiveness for the
strategies AT, RTP, and ATP when varying the level of details in
the test models.

Tables 18–21 provide results from the statistical tests. Overall,
when considering the three strategies combined with each of O1
and O2, significant differences were found for all preparation
times, execution times and mutation scores. The low p-values
show that the null hypotheses can be rejected, and we can con-
clude that there are significant differences in both cost and effec-
tiveness for the strategies AT, RTP, and ATP when varying the
level of detail in the test model. Preparation times, execution
times, and mutation scores are significantly higher when using
the complete test model.

To summarize, test suites generated from the complete model
required both higher preparation and execution time (large effect
sizes were found for both measures). On the other hand, the com-
plete models achieved higher mutation scores. The results showed
that ATP applied to a complete model is an expensive strategy. The
high fault-detection effectiveness may come at too high a cost.

Combining ATP with the abstract model resulted in a significant
cost reduction. The effectiveness was also reduced. On the other
extreme, LN2 had the lowest cost but also the lowest effectiveness;
at least for the complete model. Results for the abstract model
combined with oracle O1 showed similar results to what was
found for AT applied to the abstract model. The level of detail in
the model had an enormous impact on the cost and effectiveness
for AT; all mutants were killed by AT when using the complete
model, although at a large increase in cost. RTP and LN4, when

applied to the complete model and oracle O1, obtained as good
mutation scores as ATP and AT. Of these, RTP had the lowest costs.
Overall, the abstract model performs better with O1, the most pre-
cise oracle.

AT, RTP, ATP, and LN4 all provided the highest mutation scores
when generated from a complete model used with oracle O1. Of
these, RTP had the lowest costs. Using the state-pointer oracle,
and still based on the complete test model, the effectiveness was
slightly reduced: AT, RTP, and LN4 killed 80% of the mutants.
Regarding the abstract test model, we saw that LN3, LN4, RTP,
and ATP killed 87% of the mutants – interestingly, the cost of ATP
was dramatically reduced as compared to the test suites generated
from the complete model.

6.3.2. Cost effectiveness analysis
This section discusses how the removal of details from the test

model affects cost effectiveness. Fig. 16 displays the cost4-effective-
ness of the 24 combinations of coverage criteria, test oracles, and test
models. Each combination of oracle and test model is represented by
a unique color: sky blue represents oracle O1 and the complete test
model; pale blue represents oracle O2 and the complete test model;
yellow represents oracle O1 and the abstract test model; and finally,
red represents oracle O2 and the abstract test model.

It is worth examining the bottom of the figure on the left hand
side. For LN2, we can, as predicted, observe that by reducing the le-
vel of details in the test model, both for oracles O1 and O2, the
mutation score is lowered even further. Significant differences on
both cost and effectiveness were observed for AT when increasing
the abstraction level. None of the combinations of LN2 can be rec-

Table 15
Paired Wilcoxon signed-rank test comparing oracles O1 and O2 – preparation time.

H0 Strategy Measure p-Value bA12
Effect size 95% CI for bA12

Result Sign. diff. (CI)

O1 = O2 AT Prep. time 1.82e"06 0.67 Medium [0.521,0.794] O1 > O2 Yes
O1 = O2 RTP Prep. time 1 – – [NA,NA] O1 = O2 No
O1 = O2 ATP Prep. time 0.033 0.72 Large [0.573,0.835] O1 > O2 Yes

Table 16
Paired Wilcoxon signed-rank test comparing oracles O1 and O2 – execution time.

H0 Strategy Measure p-Value bA12
Effect size Result Sign. diff. (CI)

O1 = O2 AT Exec. time 1.82e"06 1 Large O1 > O2 Yes
O1 = O2 RTP Exec. time 1.82e"06 1 Large O1 > O2 Yes
O1 = O2 ATP Exec. time 1.86e"09 1 Large O1 > O2 Yes

Table 17
Paired Wilcoxon signed-rank test comparing oracles O1 and O2 – mutation score.

H0 Strategy Model Measure p-Value bA12
Effect size Result Sign. diff. (CI)

O1 = O2 AT Complete Mut. score 1.08e"07 1 Large O1 > O2 Yes
O1 = O2 RPT Complete Mut. score 4.61e"08 1 Large O1 > O2 Yes
O1 = O2 ATP Complete Mut. score 2.76e"07 1 Large O1 > O2 Yes

Table 18
Non-paired Wilcoxon signed-rank test comparing abstract and complete model – preparation time.

H0 Coverage criterion Oracle Measure p-Value bA12
Effect size Result Sign. diff. (CI)

A = C AT, RTP, ATP O1 Prep. time <2.2e"16 0.115 Large A < C Yes
A = C AT, RTP, ATP O2 Prep. time <2.2e"16 0.115 Large A < C Yes

4 Please note that time is shown as the sum total of the preparation time and
execution time.
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ommended; neither the combinations of AT and the abstract test
model.

The influence of the abstract test model on ATP shows a major
reduction in cost, while retaining an overall high mutation score
when using oracle O1. Looking at the results for LN4, we see that
there are significant differences in cost, both for test-suite size
and time. The reduction in mutation score is also present for both
combinations of test model and oracle (i.e. complete test model
and oracle O1 versus abstract test model and oracle O2). Interest-
ingly, however, the abstract model in combination with the better
oracle (O1) actually performs better with respect to fault-detection
when compared to the complete model combined with oracle O2.
The latter also applies to LN2, LN3, RTP, and ATP.

The results for RTP when generating test suites from the com-
plete model using the oracle O1 show a similar fault-detection le-
vel when compared to LN3 (complete model, oracle O1); AT
(complete model, oracle O1); LN4 (complete model, oracle O1);
and ATP (complete model combined with oracle O1). The costs,
however, differ. Notice that the cost of RTP is lower than that for
AT, LN4, and ATP (complete model).

Finding 3: Reducing the level of detail in the test model
significantly influenced cost effectiveness. The results show
that both the costs and fault-detection ability are
significantly lower for test suites generated from the
abstract model, as compared to the complete model.
However, when using the state-invariant oracle in addition
to the state-pointer oracle, and either of the RTP, LN3, LN4,
or ATP strategies, a comparable cost effectiveness could be
obtained from the abstract test model as compared to test
suites generated from the complete test model.

6.4. RQ4: What is the impact of sneak-path testing on cost and
effectiveness?

Sections 6.1, 6.2, 6.3 deal with conformance testing aimed at
detecting deviations from specified system behavior when ex-
pected events were invoked on the SUT. We will now focus on a
different type of testing, sneak-path testing. For each state in the
SUT, all possible events that are not specified for the particular
state are invoked. This technique is intended to catch faults that
introduce undesired, additional behavior, in terms of extra transi-
tions and actions.

Complementing conformance testing with sneak-path testing at
an additional cost in preparation and execution time resulted in 11

mutants being killed – those 11 mutants were not killed by any of
the six state-based coverage criteria. The execution of the sneak-
path test suite on the abstract model killed 10 out of 11 sneak-
paths. This was, however, due to an infeasible test case. Being
equal to the number of states in the SUT, the cost of sneak-path test
suites are rather inexpensive when compared to the state-based
coverage criteria investigated in this study. This demonstrates that
these test strategies are complementary in order to catch different
types of faults.

We are aware of the lack of formal statistical tests in this sec-
tion. However, as the evidence found in the collected data is
clear-cut and does not leave much place for uncertainty, we con-
sider this as no threat to the drawn conclusions.

Finding 4: The results indicate quite strongly that sneak-path
testing is a necessary step in state-based testing (SBT) due
to the following observations: (1) The proportion of sneak
paths in the collected fault data was high (42%), and (2) the
presence of sneak paths is undetectable by conformance
testing.

7. Validity threats

This section discusses what the authors consider to be threats to
validity.

A threat to internal validity is the fact that just one researcher
was involved in the preparation and execution of the test cases.
This was due to the lack of resources and a general lack of state-
based testing (SBT) experience in the company. It is also worth
noting that the purpose of the case study was to demonstrate the
possible benefits ABB could gain by applying SBT in the future.
The main purpose was not to study the interaction between the
tester and the technology; the focus was directed at the actual
achievements that could be obtained with respect to the cost and
effectiveness via SBT. The industry needs help in introducing new
techniques, and this is one pragmatic approach in order to demon-
strate the possible advantages of this particular technique.

Another threat to internal validity could be related to fault
seeding: both the generation of test cases and the insertion of
faults to develop mutants were conducted by a researcher. The
question that must be raised is: How can we ensure that the fault
seeding was impartial and unbiased? The researcher could poten-
tially influence the implementation of the test suites so as to be
better at detecting certain types of faults. Ideally, the generation
of test cases and fault seeding should be conducted by different

Fig. 14. Oracle O1 versus oracle O2 – mutation score versus preparation time
(diamond = O1; square = O2).

Fig. 15. Oracle O1 versus oracle O2 – mutation score versus execution time
(diamond = O1; square = O2).
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people. Nevertheless, since the test suites were automatically
generated, following known algorithms, this is not considered to
be a threat. As a result, the implementations of the algorithms do
not suffer a great risk of being manipulated in favor of detecting
specific faults. Furthermore, the seeded faults were actual errors
introduced by engineers from ABB. Hence, we believe that, in this
case, the researcher had no impact on how the faults were seeded.

One detected risk in terms of internal validity was the possible
randomness in results for the RTP coverage criterion. This issue
was handled by generating 30 random test trees, thus replicating
the experiment for these criterion 30 times.

Even though the experiment was repeated 30 times, the num-
ber of seeded faults was low compared to mutation testing using
artificial mutation operators. This may be a threat to the conclu-
sion validity as the statistical power was low due to the small sam-
ple size. It is important to note, however, that this is a first study
that should be complemented by additional studies with focus
on increasing the sample size using mutation operators. Neverthe-
less, this study is unique for its use of actual industrial faults which

positively affect the external validity and many key differences
turned out to be statistically significant.

External validity covers to what extent it is possible to general-
ize the findings, and to what extent the findings are of interest to
other people outside the investigated case [56]. The main strength
of this study is, in fact, its external validity. Two factors in particu-
lar increase the external validity, namely the industrial context and
the use of actual faults when evaluating test strategies. The system
that is the focus of this paper is highly representative of control
systems with state-based behavior, thus improving the external
validity. It is important to provide detailed context descriptions
as we have done in this paper, such as system characteristics,
development and testing procedures, so that others can relate
the results to their own context. Moreover, in contrast to the
majority of existing studies, which apply artificial faults, the faults
used in this study are realistic faults collected in a field study con-
ducted at ABB. In spite of these two factors, however, there are sev-
eral issues that should be discussed.

First, let us consider the SUT. An obvious threat to the external
validity of this study, which reduces its potential for contributing
with general results, is the fact that only one system was used in
the evaluation. It is a highly appropriate and relevant case, as it
was developed in an industrial context, and represents a real sys-
tem, and is of real-world importance. The SUT is a typical example
of control systems: It is a device that controls the movement of
machines in industrial production by supervising inputs from a
number of sensors. The characteristics of the selected system are
expected to be similar for many control systems, which may in-
crease the possibility of these results being generally valid for
these types of systems.

In previous studies, where artificial mutation operators were
applied to the evaluation of test strategies, external validity was
considered uncertain. The use of actual faults when generating mu-
tant programs is not common practice in testing research. In this
study, only 26 mutants were applied, but the seeded faults were
real and manually extracted from a field study as described in Sec-
tion 3. But again, it is not certain that the results apply to other
organizations because the types of faults that are introduced into
a system depend on the engineers working on the system. Keeping
the preparation and execution time in mind, the feasibility of the
study would be threatened by a dramatic increase in the number
of mutants. To avoid the masking of faults, only one fault was

Table 19
Non-paired Wilcoxon signed-rank test comparing abstract (A) and complete (C) model – execution time.

H0 Oracle Measure p-Value bA12
Effect size Result Sign. diff. (CI)

A = C O1 Exec. time <2.2e"16 0.017 Large A < C Yes
A = C O2 Exec. time <2.2e"16 0.091 Large A < C Yes

Table 20
Non-paired Wilcoxon signed-rank test comparing abstract (A) and complete (C) model – mutation score.

H0 Oracle Measure p-Value bA12
Effect size Result Sign. diff. (CI)

A = C O1 Mut. score <2.2e"16 0 Large A < C Yes
A = C O2 Mut. score <2.2e"16 0.005 Large A < C Yes

Table 21
Non-paired Wilcoxon signed-rank test comparing abstract (A) and complete (C) model – all measures.

H0 Measure p-Value bA12
Effect size 95% CI for bA12

Result Sign. diff. (CI)

A = C Prep. time <2.2e"16 0.115 Large [0.086,0.152] A < C Yes
A = C Exec. time <2.2e"16 0.075 Large [0.054,0.104] A < C Yes
A = C Mut. score 1.027e"10 0.170 Large [0.132,0.217] A < C Yes

Fig. 16. Abstract versus complete test model – mutation score, test-suite size and
time.
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seeded per mutant program. Thus, like other studies, e.g. [38], this
study only evaluates the detection of single faults. Complex fault
patterns and interactions have not been accounted for. As with
any empirical studies, however, this study should be replicated
for other types of faults and other control systems in order to make
the results more convincing.

Reliability concerns to what extent the data and the analysis are
dependent on the specific researchers [56] meaning that unclear
descriptions of data collection procedures may give different re-
sults in subsequent replications of the study. This is addressed by
providing a detailed description of the study design and analysis.

8. Discussion

In this study, we have seen that sneak-path testing and the
choice of coverage criterion, test oracle, and test model have a large
impact on cost effectiveness.

By looking at the reported results on fault-detection ability, we
see that ATP killed more mutants (100%) in this study when
compared to results reported in [14,25,35]. The latter reported a
mutation score as low as 54%. The relationship between the
fault-detection ability of AT versus ATP presented in [25], however,
seems to be rather consistent with the results in this study. In spite
of the differences between the study of Briand et al. [12] and this
study, our results support the findings of Briand et al.; with the
exception of the findings showing that AT did not provide an ade-
quate level of fault detection. In this study, by using a complete test
model and oracle O1 (checking state invariant and state pointer),
we saw that AT detected as many mutants as ATP. However, the
study of Briand et al. included many more mutants, albeit artificial.
Our results showed that AT obtained a very low mutation score
when applied to the abstract test model.

Empirical studies on RTP have, on the other hand, shown that, in
terms of cost and effectiveness, this particular criterion is a com-
promise between the weak AT and the more expensive ATP criteria
[12]. Our results support these findings. Note, however, that also
for RTP, the reported results on fault detection in existing studies
are highly variable (22–90%). We also found that LN2 is not recom-
mended as a testing strategy due to its very low fault-detection
ability, both when applied to the complete and abstract test mod-
els in our case study. LN3, on the other hand, obtained results com-
parable to RTP.

Although limited, existing research has suggested that the ora-
cle used when testing has a large influence on fault-detection abil-
ity [13,57–59]. Overall, our study empirically supports these
findings. For all strategies, the state-invariant oracle obtained sig-
nificantly higher mutation scores than those that were obtained
by the state-pointer oracle. AT, RTP, ATP and LN4 all provided the
highest mutation scores when generated from the complete model
used with the state-invariant oracle. Of these, RTP had the lowest
costs. Using the state-pointer oracle, still based on the complete
test model, the effectiveness was reduced: AT, RTP and LN4 killed
80% of mutants. Only the study of Briand et al. [13] is more pre-
cisely comparable as they also studied one of the coverage criteria
in the focus of this study, namely RTP. Results for RTP indicated a
25% increase in fault-detection when using the strongest oracle.
The study of Briand et al. differs from this study in the following
manners: (1) The two oracles that were compared are not exactly
the same. Both studies involve the state-invariant oracle. Never-
theless, Briand et al. compared the state-invariant oracle to a fully
precise oracle capturing exact expected results; in this study, an
oracle weaker than the state-invariant oracle was used as compar-
ison. (2) Furthermore, in contrast to this study, the study of Briand
et al. did not provide collected data on preparation time. (3) Briand
et al. used students to perform the testing; in this study, the testing

was carried out by one of the researchers. (4) The test suites were
automatically generated in this study, but manually generated in
the study of Briand et al. Finally, (5) the SUT was significantly lar-
ger in this study. Although Briand et al. [13] found great variations
in results, both studies suggest significant improvements in fault-
detection when using a stronger oracle —yet at a significantly high-
er cost. For RTP, this applied to both preparation and execution
time.

Reducing the test-suite size by removing details from the test
model is yet another area of related work where no studies have
been carried out within the context of SBT. Nevertheless, the desire
of reducing test-suite sizes has received a significant amount of
attention. There is a trade-off between a sufficiently detailed level
in the test model and the cost effectiveness of the resulting test
cases. The reduced costs of generating tests may, on the other
hand, increase the number of undetected faults.

In our case, removing contents from super-states resulted in
significantly smaller test suites, reducing the costs, yet retaining
its fault-detection ability at a reasonable level. As described earlier,
however, a large part of the generated test cases were infeasible
due to guard conditions that could not be satisfied. The reason
for this was that sub-state specific values could not be controlled
in the same way as when those sub-states were included in the test
model. To increase the number of feasible tests, ulterior work is
necessary with respect to test-data selection. Although our results
on using abstract test models as an input for test generation proved
to have acceptable fault-detection effectiveness combined with
certain coverage criteria and the state-invariant oracle, we must
take into account the omitted details and be aware of those parts
that cannot be tested based on the model [60]. We found that
the mutants that were seeded in the removed sub-states were
not detected. An overall trend in the results for the mutation score
was that the abstract test models obtained lower mutation scores
than those that were achieved by the complete test models. Inter-
estingly, we observed that by removing details from the test model
and using a stronger criterion, the results revealed that a compara-
ble cost effectiveness was obtained when compared to test suites
generated from the complete test model. Although generated
based on a different idea, our results thus support the findings of
Wong et al. [27] that test-set minimization can greatly reduce
the evaluation costs, and thus the cost of testing, with limited loss
in fault-detection effectiveness. (This is, however, dependent on
the choice of coverage criteria and oracle.)

The sneak-path test suite detected the eleven remaining mu-
tants that were not killed by any of the conformance test suites.
This demonstrates that sneak-path testing is complementary to
coverage criteria in order to catch different types of faults. Our re-
sults support the recommendation of Binder [32] and the conclu-
sions drawn in the study of Mouchawrab et al. [38]: Testing
sneak paths is an essential component of SBT in practice. The addi-
tional cost is justified by a significant increase in fault-detection
effectiveness, especially in a safety–critical context where robust-
ness to unexpected events is often crucial.

This study contributes to existing research with its realistic con-
text both in terms of the SUT and by using real faults when evalu-
ating the testing strategies. The level of details in the test model is
most often insufficiently specified; we have provided as detailed
information as possible regarding the test models. The large major-
ity of existing studies on cost effectiveness related to SBT, with the
exception of [44], utilize small, non-industrial or example cases
that are significantly smaller or less complex than the SUT in our
study. For example, recall that the number of tests generated for
ATP in this study was 1,425 as compared to 34 in [14,25]. In partic-
ular, recall the frequent use of the Cruise Control case in existing
research. The number of seeded mutants is in most cases higher
than in this study, but then again, the seeded faults are primarily
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artificial in existing studies. Nevertheless, the latter difference is
interesting given the lack of studies on artificial versus real faults.

Our contributions also include comparing two different oracles.
The applied oracle is most often not specified in existing research;
the lack of oracle information makes it difficult to provide mean-
ingful comparisons of the results. Only Briand et al. [13] specifi-
cally addressed and, in fact, compared the type of oracles used.

Existing research rarely reports the cost of SBT; in particular not
when comparing several strategies. The focus has mostly been di-
rected towards fault-detection effectiveness. The studies that re-
port the cost of test strategies, primarily report the test-suite
size. Our results contribute by also reporting the cost in terms of
preparation and execution times. The measuring strategy pre-
sented in this paper is but one way to measure cost.

9. Conclusions

In this paper, we reported on an industrial case study that eval-
uated the cost effectiveness of state-based testing (SBT), i.e., mod-
el-based testing using state models, by studying the influence of
four testing aspects: coverage criteria, test oracles, test models
and sneak paths. Although SBT is not a new area of research, this
paper was motivated by a lack of realism in studies evaluating
SBT. Moreover, existing research has primarily focused on separate
aspects of SBT, e.g., test oracles, test strategies. In this paper, how-
ever, we consider several aspects of SBT that may influence its cost
effectiveness, and most importantly, evaluate these aspects to-
gether. Our overall goal was to achieve maximum realism and
understand the interplay between selected test strategies, oracles,
and modeling precision. The comparison is exclusively based on
real faults.

In this study, we evaluated six SBT coverage criteria: all transi-
tions (AT), all round-trip paths (RTP), all transition pairs (ATP),
paths of length 2 (LN2), paths of length 3 (LN3), and paths of length
4 (LN4). The results of studying the coverage criteria as applied to a
complete test model and the state-invariant test oracle, indicate
that LN2 may be too weak a testing strategy. The remaining testing
strategies yield test suites that kill the seeded faults (except for
sneak paths). When also considering the costs, significant differ-
ences were observed. ATP was the most expensive criterion. RTP
appeared to be the most cost-effective strategy (closely followed
by LN3).

By using the less rigorous state-pointer oracle, only minor dif-
ferences in preparation time were observed as compared to using
the state-invariant oracle. Execution time, on the other hand, was
significantly lower when applying the former oracle for all six
strategies. However, effectiveness was negatively impacted. Yet,
80% of the mutants (except sneak paths) were killed by AT, RTP,
and LN4.

In addition, reducing the level of detail in the test model re-
sulted both in lower costs and effectiveness as compared to the
complete model. As we can see from Fig. 16, however, the results
for LN3, RTP, LN4 and ATP show that the obtained mutation score
exceeds 80% even when using the less detailed test model.

Complementing conformance testing with sneak-path testing
resulted in killing all the remaining mutants, though at an addi-
tional but reasonable cost in preparation and execution times. This
demonstrates that these test strategies complement each other in
order to catch different types of faults. Thus, the results indicate
quite strongly that sneak-path testing is a necessary step in
state-based testing (SBT) due to the following observations: (1)
The proportion of sneak paths in the collected fault data was high
(42%), and (2) the presence of sneak paths is undetectable by con-
formance testing.

Each of the testing aspects, coverage criteria, test oracles, and
test models influence cost effectiveness, and constitute a tradeoff

between increasing fault-detection effectiveness and reducing
costs. These aspects must be carefully considered when selecting
a strategy. However, regardless of these choices, sneak-path testing
is a necessary step in SBT as the presence of sneak paths is unde-
tectable by conformance testing. The results in this study regarding
cost and effectiveness of SBT should provide useful guidance for
industry on how to select appropriate testing strategies by
accounting for their relative cost and the criticality of the SUT.
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