
Information and Software Technology 78 (2016) 66–82

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Tester interactivity makes a difference in search-based software

testing: A controlled experiment

Bogdan Marculescu

a , ∗, Simon Poulding

a , Robert Feldt a , Kai Petersen

a , Richard Torkar b

a Blekinge Institute of Technology, Karlskrona, Sweden
b Chalmers and the University of Gothenburg, Gothenburg, Sweden

a r t i c l e i n f o

Article history:

Received 11 December 2015

Revised 2 May 2016

Accepted 30 May 2016

Available online 31 May 2016

Keywords:

Search-based software testing

Interactive search-based software testing

Controlled experiment

a b s t r a c t

Context: Search-based software testing promises to provide users with the ability to generate high quality

test cases, and hence increase product quality, with a minimal increase in the time and effort required.

The development of the Interactive Search-Based Software Testing (ISBST) system was motivated by a

previous study to investigate the application of search-based software testing (SBST) in an industrial set-

ting. ISBST allows users to interact with the underlying SBST system, guiding the search and assessing the

results. An industrial evaluation indicated that the ISBST system could find test cases that are not created

by testers employing manual techniques. The validity of the evaluation was threatened, however, by the

low number of participants.

Objective: This paper presents a follow-up study, to provide a more rigorous evaluation of the ISBST

system.

Method: To assess the ISBST system a two-way crossover controlled experiment was conducted with 58

students taking a Verification and Validation course. The NASA Task Load Index (NASA-TLX) is used to

assess the workload experienced by the participants in the experiment.

Results: The experimental results validated the hypothesis that the ISBST system generates test cases that

are not found by the same participants employing manual testing techniques. A follow-up laboratory

experiment also investigates the importance of interaction in obtaining the results.

In addition to this main result, the subjective workload was assessed for each participant by means of

the NASA-TLX tool. The evaluation showed that, while the ISBST system required more effort from the

participants, they achieved the same performance.

Conclusions: The paper provides evidence that the ISBST system develops test cases that are not found

by manual techniques, and that interaction plays an important role in achieving that result.

© 2016 Elsevier B.V. All rights reserved.

c

l

e

s

w

o

t

i

t

s
1. Introduction

Software testing plays a crucial role in increasing the quality

of software systems, as well as the perceived quality of and confi-

dence in such systems. One software testing technique is the ap-

plication of metaheuristic optimization algorithms to generate test

data, known as Search-Based Software Testing (SBST) [1,2] .

In a previous study [3] , we have proposed a system that would

allow successful application of SBST in an industrial context. This

system, called the Interactive Search-Based Software Testing (IS-

BST) tool, facilitated the use of domain knowledge existing in the
∗ Corresponding author.

E-mail address: bogdan.marculescu@bth.se (B. Marculescu).

d

H

http://dx.doi.org/10.1016/j.infsof.2016.05.009

0950-5849/© 2016 Elsevier B.V. All rights reserved.
ompany to improve the search process. This was achieved by al-

owing human testers to interact with the system and guide the

volution of the search-based solutions. The interaction was in-

pired by work in Interactive Evolutionary Computation [4–8] , and

as designed to allow the testers to make their contribution, with-

ut having to deal with the complexity of the underlying SBST sys-

em.

Previous work [9] focused on successfully applying ISBST in an

ndustrial context, and determining what were the important fac-

ors that enabled successful application. One of the findings of that

tudy was that the ISBST tool developed test cases that were quite

ifferent from those obtained by means of manual techniques.

owever, the evaluation was conducted with a low number of

http://dx.doi.org/10.1016/j.infsof.2016.05.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.05.009&domain=pdf
mailto:bogdan.marculescu@bth.se
http://dx.doi.org/10.1016/j.infsof.2016.05.009

B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82 67

p

m

t

I

n

i

c

c

d

g

o

a

t

r

t

p

s

t

w

c

a

t

B

r

S

c

t

p

2

w

i

t

w

v

p

o

t

t

b

t

c

w

e

i

S

b

d

e

i

f

q

i

t

o

i

I

n

a

t

a

t

b

t

t

d

h

w

o

s

b

b

o

a

t

h

i

i

c

t

t

e

t

a

t

T

o

b

e

h

2

h

i

g

s

M

f

u

g

i

c

a
articipants and in a context specific to our industrial partner, thus

aking it difficult to draw conclusions about the ISBST.

This study validates those findings, by conducting a large, con-

rolled experiment, comparing the test cases developed using the

SBST system with those developed using a manual black-box tech-

ique. The experiment was conducted with 58 software engineer-

ng students, participants in a software Verification and Validation

ourse at the master level. By selecting a more general SUT, in this

ase a clustering algorithm that is not tied to a particular problem

omain or company, we can increase the level of confidence in the

eneralizability of our method. Master’s students are a good choice

f participant, as they are not likely to be influenced by the biases

nd assumptions inherent in any domain, and more will have the

ime and willingness to participate in an experiment.

The experiment provides evidence that the automated system,

epresented by the ISBST tool, develops different test cases from

he manual method. A follow-up computer-based experiment also

rovides evidence for the role of interaction in obtaining the re-

ults. By isolating the interaction strategy and comparing against

he same search-based system without the benefit of interaction,

e were able to provide evidence that interaction plays a signifi-

ant role in the results obtained by the ISBST tool.

The contributions of this paper are as follows:

• Comparing test cases developed by the ISBST system and those

developed by manual exploratory testing, to identify differences

and similarities between them, and to determine whether or

not they investigate the same type of SUT behavior.

• Assessing the effect of the interaction component of the ISBST

system on the outcome of the search.

• Widening the application of the ISBST system to a completely

new type of System under Test (SUT), part of a different do-

main.

• Evaluating the ISBST system on a wider set of participants, in a

controlled environment.

Section 2 describes existing work on evolutionary approaches

nd search-based software testing and discusses the context of

he current approach, as well as providing a description of the IS-

ST system itself. In Section 3 we describe the design of the cur-

ent experiment and the tools used during the empirical process.

ections 4 and 5 present the results from the experiment and dis-

uss their significance, respectively. The threats to the validity of

he study are discussed in Section 6 , and Section 7 concludes the

aper.

. Context

This experiment is inspired by results from a study conducted

ith our industrial partner, to investigate the possibility of using

nteractive search-based software testing (ISBST) to improve the

esting process. Our industrial partner develops embedded soft-

are for industrial applications. The ISBST tool was previously de-

eloped and evaluated in that context, on a small number of com-

any engineers. Therefore, this study will evaluate the ISBST tool

utside of that specific context and with a larger number of par-

icipants.

We define a “domain specialist” as a person that develops and

ests software for their specific domain as part of their activities,

ut that is not a software engineer. To assist domain specialists,

ools are specifically designed to use the terminology, symbols, and

oncepts specific to the domain, rather than those specific to soft-

are development and testing. Thus, they focus on domain experi-

nce and expertise rather than knowledge specific to software test-

ng.

In previous work [3] we proposed a tool, called the Interactive

earch-Based Software Testing (ISBST) tool, that would use search-
ased techniques to help in the testing process. It is difficult to

evelop a priori a fitness function that would be useful for a gen-

ral SUT. As a result, the ISBST tool was designed to use a Dynam-

cally Adapted Fitness Function (DAFF). In this concept, the fitness

unction is composed of a set of dimensions relevant to system

uality to assess each candidate solution. By changing the relative

mportance of these attributes, the domain specialist can change

he fitness function and indirectly guide the search. In our previ-

us study, the relevant dimensions were identified and validated

n collaboration with our industrial partner.

Further work [9] resulted in a practical implementation of the

SBST tool. The tool, and the concept of a Dynamically Adapted Fit-

ess Function, were validated in a small case study conducted in

n industrial setting. One of the results of that study was that the

est cases that were developed by using the ISBST tool were useful

nd unexpected. The domain specialists using the tool stated that

hey would not have considered investigating that type of behavior,

ut that the behavior itself was a good addition to the test suite.

The results of the exploratory study mentioned above indicated

hat using the ISBST tool would enable domain specialists to guide

he search towards a more diverse set of behaviors than they could

evelop by using manual techniques. The more diverse set of be-

aviors would then be assessed by the domain specialists, who

ould refine relevant test cases and add them to the test suites.

Henceforth, we define the “behavior” as the set of measured

utputs, or any function of those outputs, corresponding to a given

et of inputs of the system under test (SUT). Thus, the “observed

ehavior space”, or just “behavior space”, is the total set of possi-

le behaviors for a given SUT. Note that the behavior space deals

nly with characteristics of the SUT that are measured or evalu-

ted, and is not a complete description of the SUT. The behaviors

hat are measured and form the behavior space will be called “be-

avior attributes”. The ISBST system may try to optimize, i.e. min-

mize or maximize, the found values for a given behavior attribute

n a direction. In this case, a “search objective” is defined as the

ombination of behavior attribute and direction.

Additional behavior attributes may be identified and added, if

hey are considered relevant, and this would result in changes to

he behavior space of the SUT. This further complicates attempts to

xplore the behavior space. For this paper, we define a “test case”

o consist of a set of inputs and the corresponding SUT behavior.

The behavior space of a system is, in general, difficult to define

nd difficult to explore purposefully. Varying only certain charac-

eristics of the behavior is, for most systems, a complex problem.

he ISBST tool aims to use system behavior to measure the fitness

f a given test case. By doing so, the ISBST tool can explore the

ehavior space of a system indirectly and develop test cases that

xplore previously unexercised, and unknown, regions of the be-

avior space.

.1. Related work

Search-based software testing (SBST) is the application of meta-

euristic optimization methods to the problem of software test-

ng. SBST is part of the larger scope of search-based software en-

ineering, a term coined by Harman and Jones [10] . SBST has been

uccessfully applied on a wide range of software testing problems.

cMinn [1] describes the use of SBST for temporal, structural, and

unctional testing, while Afzal et al. [2] focus their review on the

se of SBST on non-functional testing.

Search-based techniques, both in the wider area of software en-

ineering and, more specifically in the field of testing, rely on hav-

ng an automated means of assessing the quality, or “fitness” of a

andidate solution.

However, the definition and understanding of what fitness is,

nd what candidates are preferable, can change during the search.

68 B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82

p

k

s

2

c

p

m

i

U

fi

t

d

c

t

m

d

t

p

a

a

t

t

r

c

g

w

u

t

a

m

s

d

a

O

o

p

t

b

c

a

i

o

t

i

t

D

w

r

o

s

A

W

a

v
This can be the result of a changing understanding of the prob-

lem, i.e. previously unknown information becomes available, or

through clarifying misunderstandings or omissions, e.g. implicit

domain knowledge not mentioned previously is now explicitly in-

cluded in the fitness evaluation. As a result, designing a relevant

fitness function a priori , i.e. at the beginning of the process, has

proven to be a challenge.

One way of addressing this issue was to engage human users

in the search, to add their knowledge and intuition to the search.

The user can interact with a search-based system at several levels

of abstraction. At the highest level, the user sets the target that the

search should reach, and allows the automated system the freedom

to find solutions. At a medium level of abstraction, the human can

change the way the fitness of candidates is being evaluated. The

lowest level of abstraction puts the user in a position to directly

influence how the search is performed. e.g. how new candidate so-

lutions are developed.

An example of the highest level of abstraction would be an au-

tomated system that develops tests as the human user writes code

or defines specifications [6] . The system would be influenced by

the user indirectly, by having to adjust to the constantly changing

goal. Indirect interaction could also be used to explore alternative

designs, to understand design constraints or to assess alternative

design decisions [4,11] .

At the medium level, a user can more directly guide the search

by replacing the fitness function. Takagi proposed Interactive Evo-

lutionary Computation (IEC), which he describes as an Evolution-

ary Computation (EC) “that optimizes systems based on subjective

human evaluation” [5] . This would allow the human user to guide

the search according to their “preference, intuition, emotion and

psychological aspects” [5] . IEC could then see a wider spectrum of

applications, including arts and animation.

Alternatively, a system may require the human user to only re-

place the fitness functions at certain times, e.g. to serve as a tie-

breaker, when the existing fitness functions cannot rank certain

candidates [12] .

The fitness function itself can be subject to change, including

user preference as a factor in computing fitness [13,14] , having el-

egance as a key factor in software design [15] , or readjusting the

fitness function to ensure that user preferred candidates receive a

higher fitness score [16] .

At the lowest level, interaction can be very detailed. Bush and

Sayama [8] require the human to be “the main driver of the search

process” by selecting the individuals and the evolutionary opera-

tors to be applied.

Replacing the fitness function with a human user, however,

makes the fitness evaluation subjective and dependent on the indi-

vidual user. This is not a problem for applications where subjective

impressions are key, such as art, but might raise concerns when

applied to engineering problems.

A more serious problem is that the number of evaluations that

a human can perform is limited, as boredom and fatigue will set

in. This is even more of an issue at the lowest level of abstraction,

where the human user is involved in evolving each candidate. Fa-

tigue has already been identified as a major concern, and effort s to

alleviate the problem have been proposed [17] . Alternatives have,

therefore, been proposed that make it easier for the human user to

interact, by selecting candidate solutions they favor and dismiss-

ing those they do not [18] ; or focusing on the search objectives or

the fitness values more than on the candidate solutions themselves

[19,20] .

Existing work on interaction in evolutionary computation seems

to be focused on areas other than software testing. Nevertheless,

the interaction techniques being described are applicable on any

search-based system, as long as elements of it are subject to hu-

man evaluation. Moreover, human preference can help guide the
rocess where the objectives of the search are unknown or un-

nowable. This is evident in applications such as aesthetics and

oftware design, but ambiguity exists in other areas as well.

.2. Interactive search-based software testing (ISBST)

The ISBST tool is designed to make it easy for a domain spe-

ialist to support the search process with their knowledge and ex-

erience, without requiring familiarity with the particular imple-

entation of the underlying algorithm. In terms of the levels be-

ng described above, the ISBST system exists at the higher level.

sers of the system will interact with the system to develop the

tness function and provide an evaluation of some of the resulting

est cases, but not replace the fitness function or evaluate each in-

ividual test case. This approach is aimed at allowing the user to

ontrol how the search proceeds for the entire population, rather

han focusing in on individual candidate solutions.

The ISBST system generates, based on guidance from the do-

ain specialist, a population of candidate solutions or “candi-

ates”. An overview of this population of candidates is provided

o the domain specialist. The domain specialist can select from the

opulation candidates that are of interest, obtain more information

bout them, and export them for use. The domain specialist can

lso change the goals of the search, in order to guide the search

owards interesting system behaviors. From the current popula-

ion, and with the goals set by the domain specialist, the search

esumes.

The system is composed of two nested components, the inner

ycle that contains all the components for initiating, running, and

uiding the search, and the outer cycle that handles the interaction

ith the user, as shown in Fig. 1 . The outer cycle interacts with the

ser periodically, displays the candidates, collects the inputs, and

hen resumes the search with the new input. Between two inter-

ctions, the inner cycle is run with the selected inputs.

The inner cycle consists of the search algorithm itself, the

eans of interacting with the SUT, and the means for guiding the

earch. When the search algorithm generates a new test case can-

idate, that candidate consists only of a set of inputs. The inputs

re then fed into the SUT, to obtain the corresponding behavior.

nce the candidate is complete, its fitness is evaluated by means

f a fitness function.

Defining a fitness function a priori is a difficult task, as it is im-

ossible to guess the specific details of each system and each situa-

ion. To handle search guidance, the ISBST system uses a number of

ehavior attributes. The behavior attributes are generally SUT spe-

ific or, at most, domain specific. In our experience so far, behavior

ttributes have been defined during the development process, rely-

ng on input from domain specialists, and validated with the help

f domain specialists. Each behavior attribute has a weight, set by

he domain specialist via the outer cycle . The weight represents the

mportance of each behavior attribute with respect to the others.

The fitness of a candidate is a weighed sum of the scores ob-

ained by that candidate for each of the behavior attributes:

AFF j =

nObjectives ∑

i =1

Weight i ∗ Value i, j (1)

here DAFF j is the fitness value of candidate j , Weight i is the cur-

ent weight of the objective i , and Value i, j is the fitness value

f candidate j measured by objective i . The value of DAFF j is the

um of the weighted fitness values for all nObjectives objectives.

n objective k can be deselected from the computation by having

eight k = 0 .

The relative importance of each behavior attribute is the mech-

nism by which the domain specialists can influence the search:

alues for the weight of each objective are set by the domain spe-

B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82 69

System Under Test SUT Interface

II. Inner Cycle - Focused
on the Search-Based

Software Testing system.

Interaction
Layer Quality

Attributes

Optimizer
(DE)

Intermediate
Fitness

Function

Objective
Weighting

Searcher

Candidate
Encoding

Quality
Characteristics

I. Outer Cycle -
Focused on the

Domain Specialist

Display component:
 - Candidate
 - Fitness Scores

Objective Re-weighting

Candidate Selection

Front-end

Human
Domain

Specialist

Specialized
Display

Information

Fig. 1. Overview of the ISBST system.

c

u

t

c

u

t

d

r

t

b

s

t

g

a

o

i

o

e

a

t

c

m

g

h

n

u

o

s

i

d

e

i

d

t

s

s

t

2

i

o

b

(

n

j

a

c

v

s

q

f

f

w

i

o

r

t

t

i

p

c

s

s

1 http://julialang.org/
ialists in the outer cycle , and then passed to the inner cycle and

sed in the fitness evaluation.

The outer cycle enables the domain specialists to interact with

he ISBST system. This interaction has two components: visualizing

andidate solutions and guiding the search.

The domain specialist is shown a summary of the current pop-

lation of candidates solutions and overview of the scores ob-

ained by the candidates for each behavior attribute. Each candi-

ate’s scores for each behavior attribute, and detailed information

egarding each candidate are available on demand. This informa-

ion is domain and even SUT specific.

The user guides the search by setting the importance of each

ehavior attribute with respect to the others. This is done by as-

igning a weight to each behavior attribute. The weight is passed

o the inner cycle and used to compute the DAFF, and therefore

uide the search.

This guidance is achieved by allowing the domain specialist to

djust the relative importance of each of the search objectives. The

bjective, with their assigned weights, then form the DAFF that

s used for the next set of optimization steps. After a number of

ptimization steps, the domain specialist is shown the latest gen-

ration of test case candidates, provided with all the information

vailable on those candidates, and offered the possibility to adjust

heir weighting accordingly. This interaction with the specialist is

alled “interaction event”.

The exact purpose of each test case is determined by the do-

ain specialist, as is its fitness for that purpose. The ISBST tool

enerates the input data for the test cases, computes the SUT be-

avior corresponding to those inputs, and then evaluates the fit-

ess of the test case according to the weighting provided by the

ser. As the weighting changes, so does the optimization objective

f the ISBST tool.

The ISBST tool does not require the availability of an oracle to

pecify if the observed behavior is acceptable or not. Since the goal

s to investigate areas of the input and behavior space that human

omain specialists would not have otherwise considered, it can be

xpected that other mechanisms to assess that behavior, e.g. spec-

fications, models, etc., are not available. The expectation is that

omain specialists would identify those of the generated test cases
hat are remarkable in some way and assess that behavior them-

elves.

Once a candidate, or group of candidates, has been found to be

uitable, they can be exported for later review and for inclusion in

est suites. The search process can then resume.

.3. The ISBST tool implementation

The system is implemented as a distributed system, with the

nner cycle being implemented in the Julia language 1 and deployed

n a remote server. The outer cycle is implemented as a browser

ased application in Javascript, using the Data-Driven Document

D3) library 2 to enable an informative candidate display. Commu-

ication between the two sides is done by packaging candidate ob-

ects in a JavaScript Object Notation (JSON) file. 3 The system is run

s a server application, and experimental participants need only

onnect to it via browser.

During an interaction event, the user connects to the outer cycle

ia the web page. There they can see an overview of the candidate

olutions, plotted according to the scores they obtained for each

uality objective, as shown in the example in Fig. 2 . Detailed in-

ormation for each candidate solution is also available on demand,

or example in Fig. 3 , to reduce the risk of overwhelming the user

ith information. To guide the search, the users set the relative

mportance (weight) of each behavior attribute by means of a set

f sliders. An example of that panel of sliders can be seen in Fig. 4 .

When the user clicks the “Resume Search” button, the search

esumes until the next interaction event. In the current implemen-

ation, the interval between interaction events is fixed: after 50 op-

imization steps, a new interaction event is triggered.

For the current version of the system, the search algorithm used

s a Differential Evolution algorithm [21] . Differential Evolution is a

arallel direct search method, where each potential solution is en-

oded as a vector of real numbers. In our case, each vector repre-

ents the input data in one test case. The initial population is cho-

en randomly from a uniform distribution, and covers the entire
2 http://d3js.org/
3 http://www.json.org/

http://julialang.org/
http://d3js.org/
http://www.json.org/

70 B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82

Fig. 2. Example of an overview of the solutions found by the ISBST system (current generation in blue, previous generation in orange). On the left, an overview of the

candidate solutions plotted with respect to all the behavior attributes. On the right, a detailed view of one of the subgraphs. The graph shows an example of a candidate

population, plotted according to two of the relevant behavior attributes (weight_range and mean_silhouette, in this case). The matrix of scatterplots can be extended to

reflect an arbitrary number of behavior attributes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Detailed view of one candidate solution. The detailed view shows the score obtained by the candidate for each of the behavior attributes. This panel shows the raw

values for each score, rather than the normalized values used in the calculations.

Fig. 4. Detailed view of the search guidance panel. All the behavior attributes are

specified here, and the domain specialist can view and alter the weight of each

attribute to reflect their relative importance at any given moment.

p

a

i

c

m

A

i

c

f

h

m

e

f

o

r

s

fi

w

t

d

a

r

parameter space. New parameter vectors are created by mutation:

adding the weighted difference between two population vectors to

a third vector.

For each target vector x i, G , where i = 1 , 2 , . . . , NP a mutant vec-

tor is generated as follows:

v i,G +1 = x r 1 ,G + F ∗ (x r 2 ,G − x r 3 ,G) (2)

where r 1 , r 2 , r 3 ∈ 1 , 2 , . . . , NP , are integers, and mutually different,

and different from the running index i. F is a real and constant fac-

tor ∈ (0, 2] which controls the amplification of the differential vari-

ation (x r 2 ,G − x r 3 ,G) . If the mutant vector is an improvement over

the target vector, it replaces it in the following generation [21] .

The crossover rate we used is cr = 0 . 5 , the scale factor is F =
0 . 7 , and the population size is 100. The mutation strategy is that
roposed by Storn and Price [21] : DE/rand/1/bin. The strategy uses

 differential evolution algorithm (DE); the vector to be mutated

s randomly chosen (rand); one difference vector is used (1); the

rossover scheme is binomial (bin).

To allow the single objective DE to handle multi-objective and

any-objective problems, we used the Sum of Weighted Global

verages [22] . Individuals that have higher fitness scores in more

mportant search objectives, i.e. that have a higher weight, will re-

eive a better overall fitness score. This ensures that the search

avors those individuals that the users, by means of the weights,

ave decided are important.

The search objectives may represent a large number of different

easurements and have very different scales. The fitness value for

ach search objective is normalized based on the extreme values

or that objective, as shown in Eq. 3 . This ensures that a search

bjective cannot influence the fitness function by virtue of its scale,

ather than its relative importance as assessed by the user.

The fitness ratio of candidate i for one behavior attribute is

hown below, in Eq. 3 .

tness _ ratio i =

(value i − min i)

(max i − min i)
(3)

here fitness _ ratio i is the fitness ratio of candidate i with respect

o one behavior attribute, value i is the raw score obtained by can-

idate i with respect to the current behavior attribute, and min i
nd max i are the globally best and worst values seen for the cur-

ent objective in the entire search.

B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82 71

3

i

s

a

S

q

I

f

w

a

t

e

l

3

s

T

V

p

T

p

i

c

t

w

t

c

t

p

i

w

fi

t

o

s

a

e

e

t

w

s

m

i

d

a

s

u

i

e

b

w

e

d

o

b

t

b

a

3

J

T

d

f

l

t

t

e

p

p

o

m

e

t

S

s

a

q

t

4 http://julialang.org/
5 https://github.com/JuliaStats/Clustering.jl
6 http://clusteringjl.readthedocs.org/en/latest/
. Experimental design

The purpose of the experiment is to evaluate the ISBST system

n a controlled laboratory setting. We hypothesize that the ISBST

ystem finds test cases that are not developed by human users

lone, and therefore testing results in different behaviors of the

UT.

The experiment was designed to answer the following research

uestions:

• RQ1. Do test cases developed by the ISBST system investigate

different regions of the behavior space? If so, is the difference

significant?

The main hypothesis of the experiment is that test cases devel-

oped using the ISBST system are different in terms of the SUT

behavior they cover from test cases obtained using the manual

black-box testing technique. By investigating different regions

of the behavior space, the ISBST system would increase the di-

versity of available test case candidates.

While we acknowledge that test case diversity does not neces-

sarily imply increased fault finding ability, this remains a rea-

sonable objective. Work by Feldt et al. links test suites with

higher diversity to higher structural and fault coverage [23,24] .

• RQ2. Do both the search and the interaction components of the

ISBST system have a significant contribution to the observed ef-

fects?

Our hypothesis is that both components of the ISBST system

have a contribution to the result and, thus, both are relevant.

To answer this question, we executed a second experiment,

to evaluated the impact of the search and interaction compo-

nents in isolation. To achieve this goal we ran the ISBST system

again, with the same settings, but without the interactive com-

ponents.

• RQ3. Is the ISBST system more demanding of the domain spe-

cialist than using the manual exploratory testing technique? We

wanted to investigate in greater detail the demands that the IS-

BST tool places on the domain specialist. The ISBST tool adds

another layer of abstraction, so we hypothesize that it will also

place a greater strain on the domain specialist.

The independent variable is the method being used: manual or

SBST. Both methods are supported by tools that make the same in-

ormation available to the participant, and computed in the same

ay. Thus, any difference being observed, will not be due to data

vailability, or differences in the algorithms for behavior computa-

ion.

The dependent variables are: the set of test cases produced by

ach of the methods in the two experiments and the auto-assessed

evel of demands placed on the participants.

.1. Participants

The participants to the experiment were 58 students from a

oftware engineering Master’s program at the Blekinge Institute of

echnology, in Sweden. All the participants were students in the

erification and Validation course, and were recruited for the ex-

eriment through the course. All the participants were volunteers.

he incentive provided during the recruitment process was the op-

ortunity to use some of the techniques taught during the course

n a more practical setting. No other rewards, financial or course

redits, were offered to the participants.

The Verification and Validation course aims to teach students

he importance of systematic verification and validation of soft-

are, and provides them with knowledge of available methods and

echniques, complete with their capabilities and limitations. The

ourse covers methods such as reviews, unit testing, coverage, sta-

istical approaches, system and integration testing, reliability, and
erformance. During the course, students are encouraged to crit-

cally reflect and discuss topics in verification and validation, as

ell as to critically evaluate the strengths and weaknesses of veri-

cation and validation techniques. In addition, students gain prac-

ical experience in planning and applying test strategies and tool

n open source systems and conducted automated source code in-

pections.

The experiment was conducted at the end of the Verification

nd Validation course, so participants benefited from the knowl-

dge obtained during that course, in particular from the practical

xercises. That being said, no additional guidance was provided by

he experimenter, and the way participants approached the task

as deliberately left up to individual decision.

The results of the initial participant characterization survey

how most participants have some expertise in software develop-

ent, mostly at a theoretical level, due to the courses taken dur-

ng their education. Most had no industrial experience in software

evelopment or testing. Most participants also believed they had

 theoretical knowledge of the domain and some knowledge of

tatistics, due to courses taken during their education, but had not

sed this knowledge in practice. A basic introduction into SBSE was

ncluded in the course, so all participants had some basic knowl-

dge of the technique.

We tried to isolate the method as the only variable that differed

etween the two groups of participants, to the extent to which this

as possible. The relatively homogeneous level of knowledge and

xpertise lead us to conclude that any effects observed are due to

ifferences between the ISBST and the manual tools, and therefore

f the techniques, rather than differences in terms of experience

etween participants.

As students in the Verification and Validation course, the par-

icipants were familiar with the manual testing technique and had

een introduced to ISBST. Thus they were motivated to participate

nd had the capabilities to complete the tasks.

.2. System under test

The system under test (SUT) chosen for this experiment is the

ulia language 4 implementation of a k -means clustering algorithm.

he implementation is available as a Julia library 5 , complete with

ocumentation. 6 The library consists of 5438 lines of code, in 58

unctions, written entirely in Julia.

This system was chosen for two reasons. The first reason is the

evel of complexity. We define complexity both quantitatively - as

he number of inputs and outputs that form each potential solu-

ion, and qualitatively - as the difficulty a participant may face in

valuating proposed solutions.

The chosen system had to be simple enough to allow for ex-

loratory testing within the limited time available. A more com-

lex system than the one chosen would have a detrimental impact

n the performance of the manual method and make comparison

ore difficult. At the same time, the system had to be complex

nough to be representative of the embedded software that was

he inspiration for the experiment.

The second reason has to do with assessing the outcome of the

UT. For the embedded systems that served as inspiration for this

tudy, a human expert is considered to have the most competence

nd experience to evaluate a proposed solution.

For the clustering SUT chosen for this experiment, we have

uantitative measurements available to assess the proposed solu-

ions as well as the human participants providing a qualitative

http://julialang.org/
https://github.com/JuliaStats/Clustering.jl
http://clusteringjl.readthedocs.org/en/latest/

72 B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82

Table 1

An overview of the search objectives used in this experiment.

No. Behavior Dimension Description Direction

1 Number of Clusters Number of clusters to be found. (The k -means algorithm required the number of clusters to be found as an input) Minimize

2 Number of Iterations k -means clustering is done in several iterations, until the clusters are stable. Minimize

3 Mean Silhouette The Silhouette is a quantitative way to measure how well each item lies in its own cluster. The Silhouette of each

point has a value between 0 and 1, with higher values (closer to 1) indicating that the point lies well within its

own cluster and there is no meaningful alternative cluster it could be assigned to. The mean is computed to

provide an overview of how well the points belong to their respective clusters across the entire population.

Maximize

4 Silhouette Range This is the absolute distance between the lowest and the highest silhouette values found in the current candidate. A

high value for this attribute means that the test case contains both well-defined and ill-defined clusters. A low

value indicates that the test case contains only one of the two options.

Maximize

5 Mean Weight The weight of a cluster is the sum of the weights of all the points within it. For the purpose of this experiment, each

point has the same weight: weight = 1 . Larger clusters, with more widely dispersed points, will get high values for

this quality objective. Small, tightly packed, clusters will get low values for this objective.

Minimize

6 Weight Range Test cases containing a combination of large and small clusters will obtain a high value with respect to this objective. Maximize

Compute Quality Values

Number of clusters to look for (between 2 and 59): 5

Generate a new, random, set:

-1,000 -800 -600 -400 -200 0 200 400 600 800 1,000
-1,000

-800

-600

-400

-200

0

200

400

600

800

1,000

1

2
3

4

5

6

7

4
8

9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47
48

49

50

42 51

5253
54

55

56

57

58

5 59

60

Fig. 5. Defining the inputs for the manual tool. The points can be moved individu-

ally to desired positions. In the current figure, the points are color coded according

to the cluster they were assigned to.(For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

3

p

t

g

s

t

m

s

v

a

i

t

i

i

v

u

m

c

t

t

s

O

t

t

t

a

s

i

p

c

t

i

S

a

[

o

N

e

s

f

“sanity check”. This combination allows us to assess both meth-

ods, both in terms of the human participants’ perception of solu-

tion quality and in terms of the quantitative evaluation of the dif-

ferent objectives. For each test case candidate, the testers can see

the scores for each of the quantitative measurements and can see

a graph of the clustering results. Based on that information, they

decide if that is an interesting enough test case to add to the test

suite or not.

The behavior of the SUT, for this experiment, consists of the

behavior attributes shown in Table 1 . The behavior attributes are

based on measurements developed to assess and validate cluster-

ing results. The aim, whether the behavior attribute is to be mini-

mized or maximized, was arbitrarily chosen for the experiment.

In practical terms, for each test case, the set of inputs consists

of 60 points in a two-dimensional space, and the desired number

of clusters. An example of the inputs can be seen in Fig. 5 . The SUT

is then run with these inputs, and the behavior of the SUT is the

set of values obtained for each of the fitness attributes.
.3. Research instruments

The measurement aid. The manual technique used is an ex-

loratory black box testing approach, supported by a task specific

ool.

Manually writing up the points required for a test case could

et tiring and frustrating, and thus impact the evaluation. To en-

ure that participants using both methods have access to the same

ype of information about the test cases being developed, and to

itigate the risk of fatigue or frustration unduly affecting the re-

ults, a manual testing helper tool was also developed.

Participants to the experiment are expected to manually de-

elop the inputs to the test case, i.e. the 60 points to be clustered

nd the number of clusters. The SUT is then run with the selected

nputs and the behavior of the SUT is shown. The tester decides

he inputs, and then can see the resulting scores for each behav-

or attribute and the graph of cluster assignments. Based on that

nformation, they can decide whether to save the test case or not.

The tool allows for an easier way to draw up the test case, to

iew the behavior of the SUT, and to save interesting test cases,

sing the panel shown in Fig. 5 . Participants are provided with a

ore convenient and intuitive way to arrange the inputs for the

lustering algorithm. The Measurement Aid randomly generated

he required points. Then, the participant can drag an drop any of

he points in the two-dimensional input space, to match the de-

ired set of inputs. The coordinates of the point are then updated.

nce all the points are where the participant requires them to be,

he inputs are sent to the SUT, the behavior is computed, and the

est case is displayed to the participant.

As mentioned previously, the behavior system consists of more

han the cluster assignment, but also includes various means of

ssessing and describing the result. The output information pre-

ented to participants using the manual tool is the same as the

nformation presented to those using the automated tool, and dis-

layed in the same manner. This ensures the two methods are

omparable, and that neither method has access to more informa-

ion that the other.

NASA task load index. The NASA Task Load Index (NASA-TLX)

s a subjective workload assessment tool described by Hart and

taveland [25] . The NASA-TLX is commonly used to subjectively

ssess the workload when working with human-machine systems

26] in general and on assessing task difficulty in software devel-

pment [27] in particular.

Participants were provided with a paper and pen version of the

ASA-TLX evaluation, to be filled in twice by each participant: after

ach of the two experimental sessions. The most important dimen-

ions for the purpose of this experiment were: mental demand, ef-

ort, temporal demand, frustration, and performance.

B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82 73

ISBST Manual

Manual ISBST

Group 1 Group 2

1st
Session

2nd
Session

Fig. 6. Overview of the experimental design.

t

g

c

r

3

e

t

p

m

u

f

s

a

w

a

e

g

a

t

d

v

B

[

a

p

S

t

i

c

e

a

e

u

p

t

t

p

a

b

n

t

D

t

f

w

E

o

b

a

h

t

a

f

m

e

c

i

w

o

m

e

a

i

I

o

w

d

s

p

w

3

d

i

n

i

e

t

m

c

s

a

s

l

u

t

o

t

p

b

p

s

t

t

o

s

b

t

b

b

c

o
The results for each dimension were analyzed separately, rather

han being unified into a single demand rating. This allowed us to

ain a more detailed understanding of how each method was per-

eived by the participants. It also allowed us to avoid uncertainties

elating to the relative importance of each of the dimensions.

.4. Experimental process

The experiment is a crossover design, as shown in Fig. 6 . The

xperiment consists of two treatments: using the ISBST system and

he Manual technique, noted in Fig. 6 as “ISBST” and “Manual”. The

articipants are randomly split into two groups, and the experi-

ent consists of two sessions. One group, Group 1 in Fig. 6 , will

se the ISBST system for the first session and the Manual method

or the second, with the second group doing the reverse. This en-

ures that all participants have a chance to use both techniques.

The design of the experiment was refined and validated with

 pilot experiment, conducted with other researchers. The pilot

as full length and allowed experimental procedures, documents,

nd the timing of the process to be refined. The pilot was used to

valuate the procedure, the clarity and quality of the instructions

iven to the participants, assess the duration of the experiment,

nd identify any other practical considerations that might affect

he experiment. While the experiment followed the same proce-

ure, the following details concern the final experiment.

The experiment consists of two treatments, both aimed at de-

eloping a diverse set of test cases. The first technique is the IS-

ST system described in Section 2.2 in detail in our previous work

3,9] .

For the second treatment, test cases are developed manu-

lly. Each participant selects the inputs for the SUT, i.e. the 60

oints and the desired number of clusters. The tool described in

ection 3.3 then executes the SUT with those inputs and returns

he behavior of the SUT.

Due to limitations in the available laboratory space, the exper-

ment was conducted in three separate experimental instances, all

onducted within 10 days. The participants were assigned to the

xperimental instances randomly.

Each experimental instance began with a 20-min presentation

nd demo. The presentation provided an initial description of the

xperiment, of the tools that would be used, and of the system

nder test. It also included a detailed guide describing how the

articipants can develop test cases using each tool and explaining

he data each tool provides. The demo showed participants how

o use the two tools and what they should expect from them. The

resentation also emphasized the goal of the participants: to cre-

te a regression test suite that covers a wide range of interesting

ehaviors. The emphasis on covering many interesting behaviors is

ecessary, since the goal is to evaluate areas of the behavior space

hat each of the method covers.

The experimental instance consisted of two 45-min sessions.

uring a session, a participant would use the technique assigned

o them to develop test cases. Test cases that were considered use-

ul or interesting by the participants were then saved.

All participants used both of the methods, with the order in

hich each participant used the methods being randomly assigned.
ach session concluded with completing an evaluation form based

n the NASA-TLX. The two experimental sessions were separated

y a 15-min break.

In addition, each participant had a few additional documents

vailable. First, a document providing a brief description of the be-

avior attributes that constitute the SUT output, an explanation of

he practical consequences of high or low values for each attribute,

nd what the goal that the automated method was trying to reach

or each attribute. A second document provided information on the

ethod each participant used, information on how to interact with

ach tool, and other practical information needed to successfully

omplete the experiment.

Since there was a break of a few days between experimental

nstances, as well as a short break between experimental sessions,

e have asked participants not to discuss the details of the tasks,

r the approach they used, with their colleagues. We have also

ade it clear to the participants that their performance on the

xperiment would not be used as an assessment for the course

nd would not impact their grades, to reduce the incentive partic-

pants had to obtain additional information from their colleagues.

t was also made clear to the participants that there is no “right”

r “wrong” answer that they are meant to find.

The experimental sessions were conducted under observation,

ith the same researchers being involved in all sessions. This was

one to ensure that all experimental sessions received the same in-

tructions, presentation, and information. Participants has the op-

ortunity to ask questions, and care was taken that clarifications

ere not leading the participants to expected behaviors.

.5. Data collection and analysis

RQ1 is concerned with assessing the degree to which test cases

eveloped by the ISBST system differ, in terms of the SUT behav-

or they explore, from test cases developed using the manual tech-

ique. The null hypothesis in this case is that there is no signif-

cant difference between the regions of the behavior space that

ach method explores.

To answer RQ1 , we collected the test cases developed by

he participants during the experimental sessions and specifically

arked for “export” or saving. This allows participants to only in-

lude test cases they regard as interesting or novel enough to con-

ider. Since interaction with the domain expert is one of the key

ttributes of the ISBST system [3] , in answering RQ1 , we only con-

idered test cases that participants had decided to select.

To understand the complex and extensive data that we col-

ected, we have used several analysis techniques. First, we eval-

ated whether there was a statistically significant difference be-

ween the ISBST and the manually developed test cases, in terms

f the regions of the SUT behavior space they investigate. To de-

ermine if the results were statistically significant we used a non-

arametric test: the Mann-Whitney U-test [28] , as recommended

y Arcuri and Briand [29] . Effect sizes were calculated and inter-

reted using the method proposed by Vargha and Delaney [30] .

In addition, we wanted to look at which areas of the behavior

pace were explored by each method. To achieve this, we clustered

he test cases based on their behavior, and analyzed the composi-

ion of the clusters. If a cluster contains test cases resulting from

ne method only, we can conclude that that area of the behavior

pace is only explored by one of the methods.

Principal Component Analysis (PCA) [31] was used to isolate the

ehavior attributes that accounted for most of the variation. This

ype of analysis would highlight differences in the regions of the

ehavior space covered by each experimental treatment and could

e used to confirm that any results are caused by the different

haracteristics of the methods, and to strengthen confidence in the

ther analysis methods. The dimensionality reduction provided by

74 B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82

Manual ISBST

0
10

20
30

40
50

60

Number of
 Clusters

Manual ISBST

0
10

20
30

40
50

60

Weights
 Range

Manual ISBST

0.
2

0.
4

0.
6

0.
8

1.
0

Mean
 Silhouette

Manual ISBST

0
5

10
15

20
25

30

Mean
 Weight

Manual ISBST

0.
0

0.
5

1.
0

1.
5

Silhouette
 Range

Manual ISBST

5
10

15
20

Number of
 Iterations

Fig. 7. The difference between test case behavior (on each behavior dimension) between test case populations developed by the manual technique and the ISBST system.

t

[

p

e

i

v

p

a

o

4

4

p

t

n

n

a

a

m

c

o

i

W

M

n

p

t

a

t

f

v

F

w

d

t

t
the PCA also allows visualization of the two groups of test cases so

that any overlap, or lack of an overlap, can be more directly judged.

To answer RQ2 we had to isolate the search-based system from

the interactive component and assess their performance individu-

ally. A laboratory experiment was conducted to evaluate the effect

of the search and the interaction components separately.

To assess the performance of the interaction component, test

cases developed by the participants using ISBST system were com-

pared to those developed by the ISBST system without the benefit

of interaction. The ISBST system without interaction assumed that

all objectives have the same importance and assigned all the ob-

jectives the same relative weight.

To make sure that such a comparison would not be influenced

by any biases in the test cases participants exported, we collected

the entire population of test cases developed by the ISBST sys-

tem, independent of whether they were selected for export or not.

The Mann-Whitney U test was used for the comparison, and effect

sizes were calculated and interpreted using Vargha-Delaney.

We also collected information regarding the interaction be-

tween each participant and the ISBST tool: the number of inter-

actions and the weights each participant used for the objectives in

each interaction.

The realistic interaction data consists of the populations of test

cases automatically collected at the end of the experiment. For

each participant, the final population of 50 test cases was recorded,

as was the number of interaction events each participant used.

For each participant, a separate search was started, and the sys-

tem was run for the same amount of interaction events as the par-

ticipant had used in the practical experiment, and using the same

settings. The only difference was that the interaction strategy each

participant used was replaced with a Null Strategy. The Null Strat-

egy consists of keeping every objective weight to the same, non-

zero, weight. This results in all the objectives having equal prior-

ity, and is equivalent to a search conducted with no interaction.

We will refer to the experimental runs using the Null Strategy as

“non-interactive executions” of the ISBST system.

To allow us to better determine whether or not interaction has

an impact on the outcome, both the practical experiment and the

non-interactive execution had the same number of optimization

steps available, and thus the same number of fitness evaluations.

This is to clarify that the goal is not to assert the dominance of one

approach over the other, but to determine whether the interaction

component has an impact on the outcome: i.e. that the search does

not converge to the same results regardless of the human interac-

c

i
ion. This method of assessment, recommended by Črepinšek et al.

32] , allows for a fair comparison between search algorithms.

To answer RQ3 , as well as to get an overview of the partici-

ants to the study, information was also collected regarding their

xperience, skills, strategies, performance, and the level of fatigue

ncurred by using the methods.

Descriptive statistics, conducted on the participant data, pro-

ided an understanding of the participants’ level of expertise, ex-

erience, their strategies, performance and level of demand. This

pproach provided insight into the degree to which the two meth-

ds are comparable in terms of the expertise and effort required.

. Results

.1. Test suite comparison

To answer RQ1 , we looked at the test cases developed by the

articipants. During the course of the experiment, the 58 par-

icipants developed a total of n total = 4615 test cases, of which

 auto = 4154 were developed and exported using the ISBST tool and

 manual = 461 were developed using the manual tool. This imbal-

nce in terms of numbers is expected, as the ISBST tool generates

 larger number of test cases in the same period of time than the

anual method. The analysis focuses on the behavior of the test

ases. We defined the behavior of a test case as the set of scores

btained by that test case with respect to the objectives described

n Table 1 .

A first look at the data consisted of performing the Mann-

hitney U test on each dimension of the test case behaviors. The

ann-Whitney U-test is a non-parametric test, so no assumptions

eed to be met about the distribution of the population. The pur-

ose of this analysis was to determine if there is a difference be-

ween test cases developed using the ISBST tool and the manu-

lly developed test with respect to each objective that describes

he output. This initial analysis shows a statistically significant dif-

erence between the data developed by the two methods, with p -

alues of < 10 −5 . The values for each objective can be found in

ig. 7 , and the results of the statistical analysis in Table 2 . Thus,

e can state that the test cases resulting from the two methods

iffer from each other with respect to all the objectives that define

he output.

To get a better understanding of how the test cases are dis-

ributed through the behavior space, we performed a hierarchical

lustering on the objective scores. The scores were clustered us-

ng Ward’s minimum variance method [33] and employed the Eu-

B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82 75

Table 2

The p -values of the Mann-Whitney U test, for the differences (assessed in terms of behavior) between tests developed by the ISBST tool and

those developed by the manual method. The effect sizes were calculated and interpreted using the Vagha-Delaney A measure.

Number of clusters Number of iterations Mean silhouette Silhouette range Mean weight Weights range

Effect size 0 .432 0 .715 0 .673 0 .217 0 .722 0 .603

Interpretation negligible medium medium large medium small

p -value < 10 −5 < 10 −5 < 10 −5 < 10 −5 < 10 −5 < 10 −5

0
10

00
20

00
30

00
40

00
50

00

Hierarchical clustering of test case behaviour

Fig. 8. An overview of the hierarchical clustering. The y-axis is a measure of closeness of the clusters. Each leaf on the x-axis is a test case. They are arranged in order, based

on the cluster assignment. The large number of test cases made labeling individual test cases impractical. As a result, for each manually developed test case a line is drawn

in red, on the bar at the bottom of the image. For the test cases developed using the ISBST system, a similar line is drawn in blue. The red boxes indicate the clusters used

in the analysis. The width of each cluster is proportional to the number of test cases it contains. The left-most two clusters contain only manually developed test cases. The

fourth and fifth cluster from the left only contain test cases developed by the ISBST system.(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Table 3

The distribution of test cases to the clusters.

No.

Number of ISBST-generated test

cases

Number of manually generated

test cases

1 502 0

2 1392 0

3 60 293

4 2200 35

5 0 75

6 0 58

c

t

i

a

i

b

c

a

o

F

T

g

p

t

f

o

o

e

e

l

l

d

c

d

d

w

T

i

t

s

t

h

b

g

u

t

m

p

d

f

t

w

(

w

t

t

h
lidean distance as a metric. By clustering the test cases based on

heir behavior, we wanted to obtain distinct areas of the behav-

or space that were composed of similar test cases. We could then

ssess if there were any such areas that only had test cases result-

ng from one method. This would indicate that that region of the

ehavior space was explored by one method, but not the other. A

luster that contained test cases from both methods would indicate

 region of the behavior space that both methods had explored. An

verview of the results of the hierarchical clustering can be seen in

ig. 8 .

We cut off the hierarchical clustering after obtaining 6 clusters.

he value was chosen arbitrarily, as it seemed to provide a finely

rained view of the behavior space without increasing the com-

lexity to unmanageable levels.

The result, shown in Fig. 8 , shows the three larger clusters on

he right of the image composed mostly of test cases resulting

rom the ISBST tool, with two of them being composed exclusively

f test cases obtained by that method. The two clusters on the left

f the figure are composed solely of test cases obtained by manual

xploratory testing.

Table 3 shows the distribution of the number of test cases for

ach cluster. It can be seen that, while some overlap does exist, a
arge number of the test cases are in clusters that have no over-

ap. This seems to indicate that the two methods are focusing on

ifferent areas of the behavior space.

These observations are also supported by the results of a prin-

ipal component analysis, conducted on the behavior space. Three

imensions account for 76.74% of the observed variability. Since

isplaying three dimensions makes the graph harder to interpret,

e have chosen to focus on the two most influential dimensions.

hese account for 62.57% of the observed variability and are shown

n Fig. 9 .

The individual test case behaviors were plotted and form dis-

inct, though occasionally overlapping, clusters in the behavior

pace. The manually developed test cases (seen in red in Fig. 9)

end to be more spread out and cover a different area of the be-

avior space than those developed by the ISBST system (shown in

lue in Fig. 9). The optimization objective for the search-based al-

orithm was the upper right corner of the graph. Both the man-

al technique and the ISBST system use the same objectives, i.e.

he same behavior dimensions with the same directions for opti-

ization. Random test cases were also developed, for comparison

urposes and are shown in Fig. 9 in green.

Thus, we can state confidently that the two methods investigate

ifferent areas of the behavior space.

A closer analysis also shows differentiation in terms of the dif-

erent objectives. Some of the objectives allowed the participants

o find a front of solutions, illustrated in Fig. 10 in red, even if that

as dominated by the test cases developed by the ISBST system

shown in blue in the same figure). The dimensions in the figure

ere chosen because they best illustrate the solution front.

For other objectives, e.g. Silhouette Range and Weights Range,

he front is a lot less clear, as can be seen in Fig. 11 . In this case,

he manually developed test cases are more spread out in the be-

avior space and show less evidence of a front. The two dimen-

76 B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82

20 15 10 5 0 5

10
8

6
4

2
0

2

Principal Component 1

Pr
in

ci
pa

l C
om

po
ne

nt
 2

Fig. 9. The results of a principal component analysis conducted on the test case

behavior space. The tests obtained from the manual method are marked in red,

those obtained from the ISBST tool are in blue, and those generated randomly are

in green. The upper right corner is where an “ideal” solution would have optimal

values for all dimensions.(For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Mean Silhouette

M
ea

n
W

ei
gh

t

Fig. 10. The behavior of the test cases with respect to Mean Silhouette and Mean

Weight. The test cases obtained from the manual method are in red, those obtained

from the ISBST tool are in blue. The origin of the graph (lower left corner) is where

an ideal solution would have optimal values for all dimensions.(For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)

0.0 0.5 1.0 1.5

0
10

20
30

40
50

60

Silhouette Range

W
ei

gh
ts

 R
an

ge

Fig. 11. The behavior of the test cases with respect to Silhouette Range and Weights

Range. The test cases obtained from the manual method are in red, those obtained

from the ISBST tool are in blue. The top right corner of the graph is where an ideal

solution would have optimal values for all dimensions.(For interpretation of the ref-

erences to color in this figure legend, the reader is referred to the web version of

this article.)

t

e

t

m

4

p

a

h

o

d

d

s

c

u

o

h

v

t

p

C

u

t

o

W

h

r

b

c

t

u

a

i

v

i
sions in the figure were chosen because they more clearly illustrate

this.

A key element in the application of the ISBST tool is the

complete and correct definition of objectives. In previous studies

[9] this was achieved by means of validating the objectives with

domain specialists at the company. Such validation would, how-

ever, be impractical for a system aimed at a wider audience or

when domain specialists are not available. Objectives that are more

difficult to optimize, e.g. those in Fig. 11 , may hide improvements

in other selected objectives.

As a result of this analysis, we can conclude that the answer

to the first research question is that the two methods, the ISBST
ool and the manual exploratory testing, investigate different ar-

as of the behavior space. We have found that there are regions of

he behavior space that are only explored by only one of the two

ethods.

.2. The effects of the search and of interaction

The ISBST tool is composed of two elements: the search com-

onent (identified in Section 2.2 as the Inner Cycle) and the inter-

ction component (called Outer Cycle). The results up to this point

ave shown that the ISBST tool, taken as a whole, achieves the goal

f investigating areas of the search space that the manual method

oes not reach.

The effect of the search component of the ISBST tool is the

ifference between the initial population at the beginning of the

earch, and the population at the end of the non-interactive exe-

ution.

Fig. 12 shows the difference between the initial and final pop-

lations in the non-interactive execution. It is clear that for those

bjectives that were to be maximized (Weights Range, Mean Sil-

ouette, and Silhouette range) the final population shows higher

alues than the initial one. Conversely, for the objectives that were

o be minimized (Mean Weight and Number of Iterations) the final

opulation scores are lower. The one exception is the Number of

lusters, that should be minimized, but overall shows higher val-

es. This is due to the fact that less optimal values are needed for

his behavior attribute in order to improve the others. To test the

verall statistical significance of the change in values, the Mann-

hitney U test was conducted on the test case behaviors. The null

ypothesis, that the samples come from the same population, was

ejected for all the search objectives with p < 10 −5 . The values can

e seen in Table 4 . We can confidently conclude that the search

omponent has a considerable effect on the outcome of the ISBST

ool.

To assess the impact of the interaction, we compared the pop-

lations of test cases resulting from the non-interactive execution

gainst the test data resulting from the experiment. Two compar-

sons were conducted on an objective by objective basis, and the

alues for the two populations can be seen in Fig. 13 . Note that

nteraction seems to be further from the optimum than running

B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82 77

Initial Final

3
4

5
6

7
8

9
10

Number of
 Clusters

Initial Final

0
5

10
15

20

Weights
 Range

Initial Final

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

Mean
 Silhouette

Initial Final

6
8

10
12

14
16

18
20

Mean
 Weight

Initial Final

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Silhouette
 Range

Initial Final

5
10

15

Number of
 Iterations

Fig. 12. The effect of search on the test case population. For each search objective, the values for the initial population are marked with “Initial”, and those from the final

population with “Final”. Note: each search objective is shown to a different scale.

Table 4

The p -values of the Mann-Whitney U test, for the differences between the overall strategy of the participants and the non-interactive execution. The Search Effect

Significance shows the significance of differences between the initial (random) test case population and the final test case population (after a non-interactive ISBST run).

The Interaction Effect values show significance of the differences between the final population of test cases for the interactive and non-interactive runs of the ISBST. Effect

sizes were calculated and interpreted using the Vargha-Delaney A measure. Values that are both statistically significant and with a large effect size are marked in bold.

Test Number of clusters Number of iterations Mean silhouette Silhouette range Mean weight Weights range

Search effect sizes 0 .355 0 .659 0 .408 0 .242 0 .644 0 .237

Search effect interpretation small small small large small large

Search effect significance < 10 −5 < 10 −5 < 10 −5 < 10 −5 < 10 −5 < 10 −5

Interaction effect (actual) sizes 0 .454 0 .779 0 .377 0 .185 0 .978 0 .918

Interaction effect (actual) interpretation negligible large small large large large

Interaction effect significance (actual) < 10 −5 < 10 −5 0 .5098 < 10 −5 < 10 −5 0 .0 0 0301

Interaction effect (potential) sizes 0 .423 0 .923 0 .392 0 .983 0 .184 0 .754

Interaction effect (potential) interpretation small large small large large large

Interaction effect significance (potential) < 10 −5 < 10 −5 0 .03252 < 10 −5 0 .6022 < 10 −5

N Int Int

3
4

5
6

7
8

9
10

Number of
 Clusters

N Int Int

0
5

10
15

20

Weights
 Range

N Int Int

0.
2

0.
3

0.
4

0.
5

0.
6

Mean
 Silhouette

N Int Int

5
10

15
20

Mean
 Weight

N Int Int

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Silhouette
 Range

N Int Int

2
4

6
8

10
12

Number of
 Iterations

Fig. 13. The effect of interaction on the test case population. For each search objective, the values for the non-interactive execution are marked with “N-int”, and the values

for execution including interaction are marked “Int”. Note: The scale for each search objective is different. All values are for the final population at the end of both the

interactive and non-interactive runs.

w

a

v

i

a

i

I

I

p

o

b

b

a

u
ith a fixed set of objectives. A non-interactive run supposes that

ll the objectives, and their relative importance, are known in ad-

ance and fixed, which is difficult to achieve a priori . Thus, chang-

ng the weights is detrimental to the search if we compare against

n unachievable ideal run, where the “correct” weighting is known

n advance.

We distinguish between Interaction Significance (Actual) and

nteraction Significance (Potential), both seen in Table 4 . For the
nteraction Significance (Actual), we compared the test cases ex-

orted by the participants in the experiment against those devel-

ped by the ISBST system without any interaction. This has the

enefit of comparing the test cases that the participants though

est against the non-interactive run, but gives little information

bout how the two test case populations compare.

To compare the entire population produced by the participants

sing the ISBST system against that developed by the ISBST system

78 B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82

M
en

ta
l

A

M
en

ta
l

M

E
ffo

rt
A

E
ffo

rt
M

Te
m

po
ra

l
A

Te
m

po
ra

l
M

5

10

15

20

F
ru

st
ra

tio
n

A

F
ru

st
ra

tio
n

M

P
er

fo
rm

an
ce

A

P
er

fo
rm

an
ce

M

5

10

15

20

Fig. 14. The level of demand the participants felt was placed upon them by the two methods and the perceived level of performance, as self-assessed using the NASA-TLX

after the second 45-min session. All measurements are on the same scale. The results for the ISBST tool are marked with A - automated, and those for the manual technique

are marked with M - manual.

Table 5

The differences between the means of the NASA-TLX values for the manual and ISBST tool. The positive values show

that the ISBST tool is more demanding than the manual technique, with the statistically significant differences are

marked in bold.

Session Mental demand Effort Temporal demand Frustration Performance

After the first 45-min session 2 .6 3 .12 2 .4 0 .38 0 .13

After the second 45-min session 1 .03 2 .33 1 .93 2 .31 0 .9

e

s

b

T

I

l

f

i

o

t

m

c

i

t

w

t

c

5

e

S

o

b

m

h

W

n

d

r

without the benefit of interaction, the Interaction Significance (Po-

tential) was calculated, and is seen in Table 4 . The Interaction Sig-

nificance (Potential) allows us to analyze the test cases that were

developed, not just those that were exported by participants. This

addressed the concerns that participant inexperience might result

in relevant test cases not being exported. The Interaction Signifi-

cance (Potential) provides more information on the overall differ-

ence between the two populations of test cases, and lowers the

impact of the participants’ choice of exported candidates.

In spite of the overall variance in the interaction strategies and

approaches used by the participants, the interaction component

clearly has a significant impact on the overall outcome.

A closer inspection of data available for individual participants

provides more evidence to support the notion that some of the ob-

jectives are more intuitive and easier to optimize. It also empha-

sizes the importance of search objective definition in the applica-

tion of the ISBST tool.

4.3. Fatigue

To answer RQ3 , we asked each participant to fill in the NASA

Task Load Index after completing each of the two 45-min sessions.

The Mann-Whitney U Test was performed on the results to deter-

mine if any of the differences observed were statistically signifi-

cant.

The results show that, overall, the participants perceived the IS-

BST tool to be more demanding on their mental, effort, and tem-

poral resources. It is interesting to note, however, that in terms of

the frustration engendered by the each of the methods, and of the

performance (as perceived by the participants themselves), the dif-

ferences were not statistically significant.

After the first session, the ISBST system was assessed as be-

ing more mentally demanding (p = 0 . 013) and more demanding in

terms of Effort (p = 0 . 009). The data collected at the end of the

second 45-min session shows an interesting effect: only the differ-

ence in terms of Effort is still statistically significant (p = 0 . 022).
At the end of the second session, each participant had had the

xperience of using both methods, and was, thus, in a better po-

ition to compare them. A more detailed view of the results can

e found in Fig. 14 , and difference between the means is shown in

able 5 . The statistically significant differences are marked in bold.

As a result, we can conclude that the answer to RQ3 is that the

SBST tool is, indeed, more demanding of the domain specialist, at

east initially. It is worth noting, however, that the increased ef-

ort did not result in significantly higher frustration, and resulted

n similar performance.

An additional analysis was also conducted to determine if the

rder in which participants applied the methods had an effect on

he outcome. The analysis was conducted on a dimension by di-

ension basis, also the Mann-Whitney U test was used for the

omparison, and effect sizes were calculated and interpreted us-

ng Vargha-Delaney. The results show negligible effect size for all

he comparisons, as can be seen in Table 6 .

As a result of this analysis, we can conclude that the order in

hich the participants applied the methods, and therefore the dis-

ribution of participants to the groups, has no effect on the out-

ome of the experiment.

. Discussion

Our findings suggest that the ISBST system and the manual

xploratory testing technique investigate different regions of the

UTs behavior space. Therefore, we conclude that the two meth-

ds are complementary and that the diversity of the test suite can

e increased by combining relevant test cases produced by the two

ethods.

We assess the two methods in terms of the regions of the be-

avior space that they cover, and therefore, in terms of diversity.

e cannot state, in general, that this is a good measure for the

umber of faults found by the test suite. However, there is evi-

ence to suggest that increased diversity does result in more fault-

evealing test suites [23,24] .

B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82 79

Table 6

The p -values of the Mann-Whitney U test, for the differences between the two participant groups. Effect sizes were calculated and interpreted

using the Vargha-Delaney A measure. Values that are statistically significant marked in bold. Note that all the values have a negligible effect

size.

Test Number of clusters Number of iterations Mean silhouette Silhouette range Mean weight Weights range

p -value < 10 −5 < 10 −5 0 .533 0 .011 < 10 −5 < 10 −5

Effect size 0 .5486 0 .5454 0 .4947 0 .5215 0 .4496 0 .4394

Interpretation negligible negligible negligible negligible negligible negligible

b

d

w

t

t

o

T

c

w

t

d

t

n

t

t

o

a

t

e

h

j

c

m

t

o

b

m

c

c

o

m

d

p

p

a

o

i

d

d

a

f

t

e

p

t

o

c

[

i

c

t

v

t

l

N

u

fi

s

t

m

a

a

p

i

t

i

t

t

b

e

p

s

i

c

p

m

i

t

t

t

c

t

f

B

n

o

t

w

f

t

p

a

q

s
A closer look at the data shows that the test cases developed

y the ISBST tool seem somewhat more concentrated, while those

eveloped by the manual technique seem more diverse. Thus, it

ould seem that adding the test cases produced by the ISBST sys-

em would only result in a small increase in the diversity within

he test case population. We will argue that the test cases devel-

ped by the ISBST tool are a useful addition to the test suite.

The first issue that needs to be discussed is that of relevance.

he requirements we defined to develop and analyze the test

ases, as well as each of the direction of each search objective,

ere arbitrary. This makes it difficult to assess how relevant the

est cases are. But it is worth noting that many of the manually

eveloped solutions that are far from the automated set, are also

est cases that the ISBST system would evaluate as having low fit-

ess.

As mentioned in the previous sections, the search-based sys-

em has a set of search objectives, each objective with a direction,

hat it uses to optimize. Participants could choose which of those

bjectives to favor, but all selected objectives would be optimized

ccording to those directions. This is a limitation that the manual

echnique did not have, allowing participants greater freedom to

xplore test cases that the ISBST system would have dismissed as

aving too low a fitness value.

The evidence suggests that, when faced with a clear set of ob-

ectives, the ISBST system is better at evolving solutions that get

lose to those objectives. As discussed in Section 4 , there are di-

ensions where a clear front of non-dominated solutions is ob-

ained, and that front is closer to the optimum for solutions devel-

ped by the ISBST tool. Such a method, however, is more vulnera-

le to incomplete and inaccurate objectives.

The set of objectives chosen for the optimization, however,

ay be incomplete. Practical experience and new data informs the

hoice of optimization objectives that a domain specialist might

onsider relevant at any one time. As a result, identifying the set

f optimizable behaviors is a task specific to each individual do-

ain or problem, and not easy to automate. The ISBST system is

esigned to allow for the addition and removal of behaviors, as ap-

ropriate in particular situations. The current prototype, however,

laces certain limitations on what form new objectives can take

nd requires a certain amount of experience to implement the new

bjectives. This means that it is not optimized for domain special-

sts, and so the cost of adding new behaviors is quite high. A pro-

uction version of the ISBST tool would include support for the

efinition and use of custom and domain specific objectives, but

dditional work is still required before we can clearly state what

orm such support should take.

This supports the notion that the two methods are complemen-

ary, rather than competing. Focusing on the objectives does, how-

ver, limit the ISBST tool. If validating the search objectives is not

ossible or not practical, alternative mechanisms should be found,

hat can conduct a search by focusing on exploration rather than

ptimization. There is a potential to improve the ISBST tool by in-

orporating mechanisms to increase diversity, e.g. Novelty Search

34] , Viability Evolution [35] , or MAP-Elites [36] .
c

t
In analyzing the data regarding RQ2 , we note that some behav-

or attributes show greater variation or greater improvement. This

an be due to several causes.

First, the difficulty in optimizing each attribute varies, as does

heir scale. Some attributes have larger scales, where changes in

alues are more easily observed. Some objectives are easier to op-

imize and, therefore, can reach more obvious improvements with

ess effort. Moreover, objectives are sometimes contradictory. The

umber of Cluster objective is a good example, as less optimal val-

es are needed for that quality objective in order to obtain better

tness overall.

In addition, the interactive component highlights objectives that

how the most improvement. This can be compounded by the in-

eractive component, as objectives that show the most improve-

ent will also draw more attention from the domain specialists

nd receive more of their time and focus. The data we presented

nd discussed in specific to the SUT used in this study, but we ex-

ect that in any domain, such differences will arise.

Note also that, as the data analyzing the difference between

nteractive and non-interactive search, in Section 4.2 , shows that

he interactive search seems to be worse overall than the non-

nteractive search. This is to be expected, as knowing all the objec-

ives ahead of time, and having that selection and weighting stable

hroughout the search leads to better optimization. As mentioned

efore, however, coming up with a stable set of objectives, prop-

rly weighted is difficult to do a priori . Moreover, as the search

rogresses, the relative importance of objectives may shift, or new

earch objectives may be added. Thus, the reason for introduc-

ng interaction is giving the ISBST tool the flexibility to adapt to

hanges in objectives or in their relative importance.

Our discussion of fatigue, and our answer to RQ3 , showed that

articipants did consider the ISBST tool to be more demanding

entally and in terms of effort and time requirements. First, this

s to be expected, as the added complexity of the search increases

he distance between the participants’ actions and their effect on

he SUT’s behavior and the resulting test cases.

In spite of the added fatigue, however, we would like to note

hat all participants were able to use both techniques to create test

ases. Therefore, we surmise that the increased demands placed on

he participants by the ISBST tool did not prevent the participants

rom completing their tasks.

The participants also reported higher Effort demands for the IS-

ST system if they used that system first. While the difference is

ot statistically significant, further work into the psychological side

f ISBST is required before we can confidently draw conclusions on

he factors affecting the interaction.

The main factor guiding the choice of SUT for this experiment

as the assumption that interaction, and therefore the rationale

or the ISBST system, is needed where a human user can contribute

heir experience and knowledge. For the ISBST to be beneficial, a

roblem would have to allow a human user to quickly assess how

ppropriate a solution is. This is possible where test cases ca be

uickly visualized, e.g. the k -means algorithm described here. We

urmise that the ISBST tool can be adapted to problems where a

lear and informative visualization of test cases can be provided,

hough it is hard to state what shape that visualization will take.

80 B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82

n

a

e

t

i

t

s

i

b

i

s

r

t

p

t

t

i

e

g

h

t

w

i

i

7

i

I

o

t

o

b

d

f

a

t

t

v

i

s

e

m

c

b

fi

c

s

i

i

o

s

l

l

t

I

m
Further work is required to determine the types of problems that

are best suited to ISBST.

6. Threats to validity

6.1. Construct validity

First, we propose the ISBST system as a complementary tech-

nique, to quickly explore the behavior space, based on a set of de-

sired behavior attributes. Thus, our study focused on diversity of

test cases and on assessing how the techniques we used explored

different regions of the behavior space. This relies on the assump-

tion that a more diverse set of test cases will also result in better

fault finding.

We cannot claim that using the ISBST tool as a complement to

existing testing techniques will result in greater fault finding or in-

creased quality. Only that such a tool increases the number of SUT

behaviors that are being investigated. There is, however, work to

suggest that test case diversity does result in greater structural and

fault coverage [24] . Further studies are necessary before any con-

clusions can be drawn regarding the impact of such methods on

software quality in general and on fault finding in particular.

6.2. External validity

A second issue is the choice of SUT. For this study, we wanted

a SUT with a high-dimensional input and behavior, and where as-

sessing the quality of the solution would involve human partici-

pants. The chosen SUT had to strike a balance: it had to be simple

enough to understand and use in the limited time available to the

participants. However, it also had to be complex enough to bene-

fit from exploratory black-box techniques and not allow optima to

be simply calculated or exhaustively searched. We chose a system

with a high-dimensional input and behavior, based on our previ-

ous experience with our industrial partner. The k -means clustering

algorithm has the complexity of some of the embedded modules

our industrial partner works with, without being domain specific.

The results of the algorithm can be described as the behavior

used to optimize, but participants also had access to the assign-

ment of points to clusters. This allowed them to interpret a test

case candidate both from the objective perspective of the com-

puted behaviors and from a subjective evaluation of whether or

not the clustering seemed valid to them. Thus, evaluating candi-

date test cases could only be done by involving human partici-

pants.

Nevertheless, we cannot claim our conclusions can be applied

to any SUT. Systems that have different characteristics: with a

lower number of inputs or where the behaviors are not depen-

dent on the inputs alone, could show different effects. Moreover,

systems that do not require human input to assess candidate solu-

tions might not need the interactive component altogether. Before

using this technique in new domains or where such characteristics

of the SUTs are not known, further validation is required.

6.3. Other validity threats

Finally, the choice of participants and their level of expertise

are also threats to validity. The participants for the experiment

were all students at one university in Sweden, and participating

in the Verification and Validation course, part of the Software En-

gineering Master’s program. This may result in the participants not

being representative for the domain specialists they stand in for.

The participants are software engineers in training. While they do

not have the experience, their skills and knowledge are relevant to

the experiment. In addition, work by Kuzniarz et al. [37] suggests

that conclusions can be drawn if students are less familiar with a
ew method being proposed than to the standard it is compared

gainst. Moreover, Höst et al. suggest that conclusions drawn from

xperiments with students can hold if carried out with students in

heir final years [38] . The study they performed involved students

n their fourth year, in their last or penultimate year of their Mas-

er’s education. The students in our experiment are also Master’s

tudents, taking advanced courses in software engineering, and are

n the last or penultimate year of their Master’s programme. Thus,

oth these assumptions hold in our case. Nevertheless, further val-

dation is required, to assess the impact of experience on the ISBST

ystem.

An added concern is that of domain knowledge. The ISBST tool

elies on domain specialists to assess candidate solutions and guide

he search, based on their knowledge and expertise. The partici-

ants in our experiment were chosen based on their willingness

o participate and their availability in the numbers required for

he experiment, rather than domain knowledge or experience. The

nitial survey of the participants also confirms that their knowl-

dge of the problem domain, self-evaluated, is limited. This sug-

ests that experienced domain specialists may exhibit different be-

avior and may obtain different results.

Thus, before applying the findings in industry, further valida-

ion is required. Prototyping any tools with the domain specialists

ould provide improvements to the tool itself, as well as greater

nsight into any domain or context specific limitations that could

nfluence the search.

. Conclusions

In this paper we have presented an experiment comparing an

mplementation of interactive search-based software testing, the

SBST tool, and a manual exploratory black-box technique, in terms

f developing test cases for a given SUT. The SUT in this case was

he Julia implementation of a k -means clustering algorithm.

RQ1 was concerned with the degree to which test cases devel-

ped by the automated method investigate different regions of the

ehavior space, thereby increasing the diversity of available candi-

ates.

The experiment has shown that the two methods focus on dif-

erent areas of the behavior space and enabled participants to cre-

te test cases that exercise different types of behaviors of the sys-

em. This indicates that the ISBST tool is a useful complement to

he exploratory black-box technique: it allows participants to de-

elop test cases that investigate different behaviors and character-

stics of the system.

RQ2 focused on identifying if both the interactive and the

earch components of the ISBST system contribute to the observed

ffects.

To answer this question we have conducted a laboratory experi-

ent to evaluate the impact of both the interaction and the search

omponent on the outcome of the ISBST system. We conclude that

oth components significantly influence the search process and the

nal outcome.

The subject of RQ3 was the demand placed on the domain spe-

ialists by each of the two methods. We conclude that the ISBST

ystem seems to demand more effort from the domain special-

st, at least initially, but does not result in a significant increase

n frustration or a significant degradation of performance.

An additional conclusion is that there are limitations to the

bjective-based approach that the ISBST tool uses to guide the

earch. The objectives used, if incomplete or improperly formu-

ated, can be biased against certain types of behaviors and thus

imit the search. This is not a problem if the objectives can be ex-

ensively validated with domain experts and constantly updated.

f such validation is not possible or not affordable, an alternative

ethod, e.g. non-competitive or exploration focused evolutionary

B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82 81

93%

95%

98%

98%

98%

100%

7%

5%

2%

2%

2%

0%General Programming Knowledge

Industrial Experience

Experience with Software Testing

Experience with SBST

Knowledge of Probability and Statistics

Domain Familiarity

100 50 0 50 100
Percentage

Response 1 2 3 4

Fig. 15. Results of the participant characterization test. The plot centers on the middle (between response 2 and 3). The percentages on the left are the sum for responses 1

and 2, and percentages on the right are the sum for responses 3 and 4.

c

B

r

A

v

t

p

w

p

f

s

d

p

R

omputation, could provide a way to mitigate the limitations of IS-

ST. Future work will focus on assessing exploration focused algo-

ithms and investigating the benefits they may provide.

ppendix

Participant characterization survey

The experiment began with a participant characterization sur-

ey, containing a number of questions aimed at assessing the par-

icipants’ experience and knowledge of several key areas: general

rogramming knowledge, industrial experience, knowledge of soft-

are testing, familiarity with SBSE, knowledge of statistics, and ex-

erience with the domain chosen for the system under test. These

actors were self-assessed by the participants and the results are

hown in Fig. 15 .

It is worth pointing out that the scales for each of the assessed

imensions were different. The results of the pre-test can be inter-

reted as follows:

• General programming experience . This was assessed in terms

of the number of programming courses the participants had

taken up to the time of the experiment. The values are 1 -

for one or two courses, 2 - for 3 or more courses, with higher

number for practical experience in industry. Two thirds of the

participants had had one or two courses (value 1 - in Fig. 15),

with the remaining third having had more than 3 programming

courses (a value of 2 in Fig. 15).

• Industrial experience in programming . For this dimension,

answers range from 1 - no industrial experience programming,

to 3 - more than one year of industrial experience. Most par-

ticipants to the experiment were students with no industrial

experience.

• Software testing experience . This dimension assesses the ex-

perience participants had with software testing before the Ver-

ification and Validation course, with 1 representing very little

to no experience in testing (even in courses), and 4 represent-

ing more than 1 year of industrial experience with testing ac-

tivities. Most participants had not undertaken any explicit and

systematic testing activities. We can only conclude that the Ver-

ification and Validation course was the first contact most par-

ticipants had with systematic testing activities.

• Experience of search-based software testing (SBST) . The an-

swers for this dimension range from 1 - never heard of SBST
before, to 4 - practical experience using SBST. Most participants

had attended one lecture on SBST, that was part of the Verifi-

cation and Validation course, and their answers reflect this.

• Statistics . This dimension evaluates the participants’ experi-

ence with statistics and the use of statistical methods. The an-

swers range from no knowledge of statistics to practical expe-

rience using statistical methods to solve problems. Except for a

few outliers, most participants had courses describing statistical

methods, but little practical experience.

• Domain familiarity . This dimension evaluates the participants’

familiarity with the domain, in this case with clustering in gen-

eral and k -means clustering in particular. Most participants had

no experience at all with clustering, with one participant hav-

ing used clustering as a means of data analysis.

eferences

[1] P. McMinn , Search-based software testing: past, present and future, in: Fourth
International Conference on Software Testing, Verification and Validation

Workshops, 2011, pp. 153–163 .
[2] W. Afzal, R. Torkar, R. Feldt, A systematic review of search-based testing for

non-functional system properties, Inform. Softw. Technol. 51 (6) (2009) 957–

976, doi: 10.1016/j.infsof.20 08.12.0 05 .
[3] B. Marculescu, R. Feldt, R. Torkar, A concept for an interactive search-based

software testing system, in: G. Fraser, J. Teixeira de Souza (Eds.), Search Based
Software Engineering, Lecture Notes in Computer Science, 7515, Springer Berlin

Heidelberg, 2012, pp. 273–278, doi: 10.1007/978- 3- 642- 33119- 0 _ 21 .
[4] R. Feldt , Genetic programming as an explorative tool in early software develop-

ment phases, in: Proceedings of the 1st International Workshop on Soft Com-

puting Applied to Software Engineering (SCASE ’99), Limerick University Press,
University of Limerick, Ireland, 1999, pp. 11–20 .

[5] H. Takagi, Interactive evolutionary computation: fusion of the capabilities of
ec optimization and human evaluation, Proc. IEEE 89 (9) (2001) 1275–1296,

doi: 10.1109/5.949485 .
[6] R. Feldt , An interactive software development workbench based on biomimetic

algorithms, Technical Report, Dept. of Computer Engineering, Chalmers Univer-

sity of Technology, Gothenburg, 2002 . 02-16
[7] C.L. Simons , I.C. Parmee , R. Gwynllyw , Interactive, evolutionary search in up-

stream object-oriented class design, IEEE Trans. Softw. Eng. 36 (6) (2010)
798–816 .

[8] B. Bush, H. Sayama, Hyperinteractive evolutionary computation, Evolutionary
Comput. IEEE Trans. 15 (3) (2011) 424–433, doi: 10.1109/TEVC.2010.2096539 .

[9] B. Marculescu, R. Feldt, R. Torkar, S. Poulding, An initial industrial evaluation
of interactive search-based testing for embedded software, Appl. Soft Comput.

29 (C) (2015) 26–39, doi: 10.1016/j.asoc.2014.12.025 .

[10] M. Harman , B.F. Jones , Search-based software engineering, Inform. Softw. Tech-
nol. 43 (14) (2001) 833–839 .

[11] I.C. Parmee , D. Cvetkovic , A.H. Watson , C.R. Bonham , Multiobjective satisfaction
within an interactive evolutionary design environment, Evolutionary Comput.

8 (2) (20 0 0) 197–222 .

http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0001
http://dx.doi.org/10.1016/j.infsof.2008.12.005
http://dx.doi.org/10.1007/978-3-642-33119-0_21
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0004
http://dx.doi.org/10.1109/5.949485
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0007
http://dx.doi.org/10.1109/TEVC.2010.2096539
http://dx.doi.org/10.1016/j.asoc.2014.12.025
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0011

82 B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82

[

[

[

[

[

[

[

[12] P. Tonella , A. Susi , F. Palma , Using interactive ga for requirements prioritization,
in: Proceedings of the 2nd International Symposium on Search Based Software

Engineering, in: SSBSE ’10, IEEE Computer Society, Washington, DC, USA, 2010,
pp. 57–66 .

[13] G. Avigad, A. Moshaiov, Interactive evolutionary multiobjective search and op-
timization of set-based concepts, Systems, Man, and Cybernetics, Part B 39 (4)

(2009) 1013–1027, doi: 10.1109/TSMCB.2008.2011565 .
[14] K. Deb, A. Sinha, P. Korhonen, J. Wallenius, An interactive evolutionary mul-

tiobjective optimization method based on progressively approximated value

functions, Evolutionary Comput. IEEE Trans. 14 (5) (2010) 723–739, doi: 10.
1109/TEVC.2010.2064323 .

[15] C.L. Simons , I.C. Parmee , Elegant object-oriented software design via interac-
tive, evolutionary computation, Systems, Man, and Cybernetics, Part C 42 (6)

(2012) 1797–1805 .
[16] A. Liapis , G.N. Yannakakis , J. Togelius , Limitations of choice-based interactive

evolution for game level design, in: Proceedings of AIIDE Workshop on Human

Computation in Digital Entertainment, 2012 .
[17] R. Kamalian, E. Yeh, Y. Zhang, A. Agogino, H. Takagi, Reducing human fatigue

in interactive evolutionary computation through fuzzy systems and machine
learning systems, in: Fuzzy Systems, 2006 IEEE International Conference on,

2006, pp. 678–684, doi: 10.1109/FUZZY.2006.1681784 .
[18] P. Walsh , P. Gade , Terrain generation using an interactive genetic algorithm, in:

Evolutionary Computation (CEC), 2010 IEEE Congress on, IEEE, 2010, pp. 1–7 .

[19] N. Hayashida , H. Takagi , Visualized iec: Interactive evolutionary computa-
tion with multidimensional data visualization, in: Industrial Electronics Soci-

ety, 20 0 0. IECON 20 0 0. 26th Annual Conference of the IEEE, 4, IEEE, 20 0 0,
pp. 2738–2743 .

[20] G. Bavota , F. Carnevale , A. De Lucia , M. Di Penta , R. Oliveto , Putting the devel-
oper in-the-loop: an interactive ga for software re-modularization, in: Proceed-

ings of the 4th international conference on Search Based Software Engineering,

in: SSBSE’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 75–89 .
[21] R. Storn, K. Price, Differential evolution a simple and efficient heuristic for

global optimization over continuous spaces, J. Global Optim. 11 (4) (1997) 341–
359, doi: 10.1023/A:1008202821328 .

[22] P. Bentley, J. Wakefield, Finding acceptable solutions in the pareto-optimal
range using multiobjective genetic algorithms, in: P. Chawdhry, R. Roy, R. Pant

(Eds.), Soft Computing in Engineering Design and Manufacturing, Springer Lon-

don, 1998, pp. 231–240, doi: 10.1007/978- 1- 4471- 0427- 8 _ 25 .
[23] R. Feldt, R. Torkar, T. Gorschek, W. Afzal, Searching for cognitively diverse

tests: Towards universal test diversity metrics, in: Software Testing Verifica-
tion and Validation Workshop, 2008. ICSTW ’08. IEEE International Conference

on, 2008, pp. 178–186, doi: 10.1109/ICSTW.2008.36 .
[24] R. Feldt , S. Poulding , D. Clark , S. Yoo , Test set diameter: Quantifying the diver-

sity of sets of test cases, CoRR abs/1506.03482 (2015) .
25] S.G. Hart , L.E. Staveland , Development of nasa-tlx (task load index): Results
of empirical and theoretical research, Human Mental Workload 1 (3) (1988)

139–183 .
26] E. Haapalainen, S. Kim, J.F. Forlizzi, A.K. Dey, Psycho-physiological measures for

assessing cognitive load, in: Proceedings of the 12th ACM International Con-
ference on Ubiquitous Computing, in: UbiComp ’10, ACM, New York, NY, USA,

2010, pp. 301–310, doi: 10.1145/1864349.1864395 .
[27] T. Fritz, A. Begel, S.C. Müller, S. Yigit-Elliott, M. Züger, Using psycho-

physiological measures to assess task difficulty in software development, in:

Proceedings of the 36th International Conference on Software Engineering, in:
ICSE 2014, ACM, New York, NY, USA, 2014, pp. 402–413, doi: 10.1145/2568225.

2568266 .
28] H.B. Mann , D.R. Whitney , On a test of whether one of two random variables is

stochastically larger than the other, Ann. Math. Statis. 18 (1) (1947) 50–60 .
29] A. Arcuri, L. Briand, A practical guide for using statistical tests to assess ran-

domized algorithms in software engineering, in: Software Engineering (ICSE),

2011 33rd International Conference on, 2011, pp. 1–10, doi: 10.1145/1985793.
1985795 .

[30] A. Vargha , H.D. Delaney , A critique and improvement of the cl common lan-
guage effect size statistics of mcgraw and wong, J. Edu. Behavioral Statis. 25

(2) (20 0 0) 101–132 .
[31] K. Pearson , Liii. on lines and planes of closest fit to systems of points in space,

The London, Edinburgh, and Dublin Philosoph. Mag. J. Science 2 (11) (1901)

559–572 .
32] M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolu-

tionary algorithms: A survey, ACM Comput. Surv. 45 (3) (2013) 35:1–35:33,
doi: 10.1145/2480741.2480752 .

[33] J.H. Ward Jr, Hierarchical grouping to optimize an objective function, J. Am.
Statis. Assoc. 58 (301) (1963) 236–244, doi: 10.1080/01621459.1963.10500845 .

[34] J. Lehman, K.O. Stanley, Evolving a diversity of virtual creatures through nov-

elty search and local competition, in: Proceedings of the 13th Annual Confer-
ence on Genetic and Evolutionary Computation, in: GECCO ’11, ACM, New York,

NY, USA, 2011, pp. 211–218, doi: 10.1145/2001576.2001606 .
[35] A. Maesani, P.R. Fernando, D. Floreano, Artificial Evolution by Viability Rather

Than Competition, PLOS One 9 (1) (2014) e86831, doi: 10.1371/journal.pone.
0086831 .

36] J. Mouret , J. Clune , Illuminating search spaces by mapping elites, CoRR

abs/1504.04909 (2015) .
[37] L. Kuzniarz , M. Staron , C. Wohlin , Students as study subjects in software engi-

neering experimentation, in: Third Swedish Conference on Software Engineer-
ing Research and Practise in Sweden: Proceedings (SERPS’03), 2003, pp. 19–24 .

38] M. Höst, B. Regnell, C. Wohlin, Using students as subjectsa comparative study
of students and professionals in lead-time impact assessment, Empirical Softw.

Eng. 5 (3) (20 0 0) 201–214, doi: 10.1023/A:1026586415054 .

http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0012
http://dx.doi.org/10.1109/TSMCB.2008.2011565
http://dx.doi.org/10.1109/TEVC.2010.2064323
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0016
http://dx.doi.org/10.1109/FUZZY.2006.1681784
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0020
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1007/978-1-4471-0427-8_25
http://dx.doi.org/10.1109/ICSTW.2008.36
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0025
http://dx.doi.org/10.1145/1864349.1864395
http://dx.doi.org/10.1145/2568225.2568266
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0028
http://dx.doi.org/10.1145/1985793.1985795
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0031
http://dx.doi.org/10.1145/2480741.2480752
http://dx.doi.org/10.1080/01621459.1963.10500845
http://dx.doi.org/10.1145/2001576.2001606
http://dx.doi.org/10.1371/journal.pone.0086831
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30095-7/sbref0037
http://dx.doi.org/10.1023/A:1026586415054

	Tester interactivity makes a difference in search-based software testing: A controlled experiment
	1 Introduction
	2 Context
	2.1 Related work
	2.2 Interactive search-based software testing (ISBST)
	2.3 The ISBST tool implementation

	3 Experimental design
	3.1 Participants
	3.2 System under test
	3.3 Research instruments
	3.4 Experimental process
	3.5 Data collection and analysis

	4 Results
	4.1 Test suite comparison
	4.2 The effects of the search and of interaction
	4.3 Fatigue

	5 Discussion
	6 Threats to validity
	6.1 Construct validity
	6.2 External validity
	6.3 Other validity threats

	7 Conclusions
	 Appendix
	 References

