

Accepted Manuscript

Full modification coverage through automatic similarity-based test
case selection

Francisco G. de Oliveira Neto, Richard Torkar,
Patrı́cia D.L. Machado

PII: S0950-5849(16)30139-2
DOI: 10.1016/j.infsof.2016.08.008
Reference: INFSOF 5755

To appear in: Information and Software Technology

Received date: 23 December 2015
Revised date: 17 July 2016
Accepted date: 23 August 2016

Please cite this article as: Francisco G. de Oliveira Neto, Richard Torkar, Patrı́cia D.L. Machado, Full
modification coverage through automatic similarity-based test case selection, Information and Software
Technology (2016), doi: 10.1016/j.infsof.2016.08.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.infsof.2016.08.008
http://dx.doi.org/10.1016/j.infsof.2016.08.008

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Full modification coverage through automatic similarity-based test case selection

Francisco G. de Oliveira Netoa, Richard Torkara,c, Patrı́cia D. L. Machadob

aChalmers and the University of Gothenburg, Sweden
bFederal University of Campina Grande, PB, Brazil

cHuawei Technologies Sweden AB, Sweden

Abstract

Context: This paper presents the similarity approach for regression testing (SART), where a similarity-based test case selection
technique is used in a model-based testing process to provide selection of test cases exercising modified parts of a specification
model. Unlike other model-based regression testing techniques, SART relies on similarity analysis among test cases to identify
modifications, instead of comparing models, hence reducing the dependency on specific types of model.

Objective: To present convincing evidence of the usage of similarity measures for modification-traversing test case selection.

Method: We investigate SART in a case study and an experiment. The case study uses artifacts from industry and should be seen
as a sanity check of SART, while the experiment focuses on gaining statistical power through the generation of synthetical models
in order to provide convincing evidence of SART’s effectiveness. Through posthoc analysis we obtain p-values and effect sizes to
observe statistically significant differences between treatments with respect to transition and modification coverage.

Results: The case study with industrial artifacts revealed that SART is able to uncover the same number of defects as known
similarity-based test case selection techniques. In turn, the experiment shows that SART, unlike the other investigated techniques,
presents 100% modification coverage. In addition, all techniques covered a similar percentage of model transitions.

Conclusions: In summary, not only does SART provide transition and defect coverage equal to known STCS techniques, but it
exceeds greatly in covering modified parts of the specification model, being a suitable candidate for model-based regression testing.

Keywords: Regression testing, Test case selection, Model-based testing, Experimental Study

1. Introduction

Regression testing at the code level has been widely inves-
tigated in literature [1] and enables solution for most software
structure testing problems such as modified code coverage or
finding data and control dependencies affected by modifica-
tions. At the same time, there has been a growing interest
in model-based regression testing due to the many benefits of
handling high-level abstraction models [2, 3]. Furthermore, ex-
isting model-based testing (MBT) techniques enable automatic
generation of test cases from models, making it easier to design
and execute test cases.

On the other hand, those generated test suites, very often,
include numerous redundant test cases that can make it signifi-
cantly more difficult to execute regression tests [4]. Rather then
executing all test cases (i.e. the retest all approach), a more fea-
sible approach to regression testing is to select a few test cases
to execute. But even with a specification model, particularly
a high level one (e.g. activity diagrams, or natural language
use case templates) where visualisation and readability assists
testers in understanding the system under test (SUT), selecting
test cases can be costly and overwhelming since testers need to
be aware of a SUT’s new, obsolete and unchanged elements.

1.1. Problem Statement
Given the amount of high level information available, the

main challenge then becomes selecting a representative subset
of test cases in order to reduce the costs of regression testing
at the system level. In other words, we aim at maximizing the
chances of detecting defects as well as minimizing the num-
ber of test cases needed. Here, we consider as representative
the test cases exercising modifications performed on a software
system—a very common criterion for selecting regression test
cases [5, 6, 3]. But how can we then identify these test cases in
a test suite?

Existing selection techniques answer that question by using
different approaches - either by comparing different versions
of specification models, or analysing existing dependencies be-
tween model elements [1, 3, 7]. As an example, consider the
state-based specification models presented in Figure 1 and the
correspondent test suites that can be generated from them, by
traversing all paths. They represent the specification for begin-
ning a game.

Note that Model 2 has two modifications: removal of state
4 and then addition of state 81. If we are unable to execute

1For each modified state, their connecting transitions were, respectively, re-

Preprint submitted to Information and Software Technology August 24, 2016

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

TC1 TC2 TC3

Select “Load Game”/
List of saved games is
shown

Select “Load Game”/
List of saved games is
shown

Select “Load Game”/
List of saved games is
shown

Select a saved game/
Chosen game is loaded and
Hero is shown in screen.

Select “Load Hero”/
List of existing heroes
is shown

Create new hero/
Hero creation screen is
shown

Select “Start Game”/
Game begins

Select a hero./
Hero is loaded.

Conclude hero creation/
Hero is saved.

Select “Start Game”/
Game begins

Select “Start Game”/
Game begins

1

2 3

6

4 5

7

Select “New Game”/
New screen is shown

Create new hero/
Hero creation screen is shown

Conclude hero creation/
Hero is saved.

Select “Start Game”/
Game begins

Select “Load Hero”/
List of existing heroes
is shown

Select “Load Game”/
List of saved games
Is shown.

Select a saved
game/ Chosen
game is loaded

and hero is shown

Select a hero./
Hero is loaded.

TC’1 TC’2 TC’3

Select “Load Game”/
List of saved games is
shown

Select “Load Game”/
List of saved games is
shown

Select “Load Game”/
List of saved games is
shown

Select a saved game/
Chosen game is loaded and
Hero is shown in screen.

Select “random hero”/
Random hero is
created and shown.

Create new hero/
Hero creation screen is
shown

Select “Start Game”/
Game begins

Select “Accept”/
Hero is saved.

Conclude hero creation/
Hero is saved.

Select “Start Game”/
Game begins

Select “Start Game”/
Game begins

1

2 3

6

8 5

7

Select “New Game”/
New screen is shown

Create new hero/
Hero creation screen is shown

Conclude hero creation/
Hero is saved.

Select “Start Game”/
Game begins.

Select “Load Game”/
List of saved games
is shown.

Select “Accept”/
Hero is saved.

Select a saved
game/ Chosen
game is loaded

and hero is shown

Select “random hero”/
Random hero is created

and shown.

Model version 1

Model version 2

Figure 1: Two versions of specification models and their respective test suites.

all test cases, then a tester would prefer to execute only TC’2
to verify whether this modification affects the proper execution
of States 1, 3, 6 and 7. If another test case could be selected,
a good option would be TC’3, since State 5 is closer2 to the
modification performed.

Determining modifications by simply comparing those mod-
els can be misleading, inefficient and at the same time non-
trivial. First, the technique needs to be aware of both the model
layout and the model elements (states, labels, conditions, etc.)
Otherwise, modifications that do not change the model layout
may not be detected. In addition, a straightforward comparison
can erroneously determine that only the labels of transitions/
states are changed when, in fact, a completely new location in
the execution scenario is added. Note that, in order to select
the test cases, the technique also requires traceability between
model elements and the steps of the test cases.

Certainly, for this example, applying a comparison technique
seems like an effortless task. However, for large and complex
models, comparison and analysis of all model elements can be
inefficient, specially when specifications become large or un-
structured, after consecutive modifications. Similarly, depen-
dency analysis is costly because the number of dependencies
can grow significantly with each modification. Furthermore,
requiring traceability between model elements and test cases
introduces a level of dependency to the type of model being

moved and added.
2State 3 was directly affected by the addition of State 8 because a new tran-

sition was added to it.

used. Being dependent to a specific type of model is risky given
that it can compromise the versatility of a technique, whenever
stakeholders decide to represent their specification according to
different types of models.

1.2. Proposed Solution

In turn, similarity-based test case selection (STCS) relies on
similarity/distance functions to select the more (or less) differ-
ent scenarios, hence enabling the removal of redundancy among
test cases [8, 9]. The benefit with this type of selection is testing
a diversity of test cases in a SUT. Besides, similarity functions
are usually mathematical functions easy to define and incorpo-
rate in a tool. They have now been widely used and investigated
regarding their capability to identify similarities within a set of
test cases [9].

In the scope of model-based regression testing, our contri-
bution is to use those similarity measurements to assess sets
of test cases belonging to different software versions and then
use this information to select test cases for system testing of
a modified specification. We named our proposed technique
the similarity approach for regression testing, or simply SART.
In contrast to other specification-based approaches presented in
literature [10], we focus on similarity analysis among test cases
to identify modifications instead of comparing and analysing
models. Consequently, SART is not dependent to a specific
type of model.

To better understand the technique we present a case com-
prising specification, generation and analysis of test cases.

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

However, SART’s input can simply be two test suites (e.g. ex-
ported from TestLink3), from different versions of the same
SUT. Considering our example in Figure 1, our technique
would simply analyse the test cases’ content by converting them
into vectors. By looking at the distance between those vectors
SART is able to determine the test cases exercising modifica-
tions. Ultimately, SART would select TC’2 and TC’3 to test
both modifications performed.

In order to gather evidence regarding SART’s feasibility,
we perform a case study and an experiment. First, we anal-
yse SART with industrial artifacts that include specification
models, a SUT and the detected defects4. Complementary to
our case study, we do an experiment where SART selects test
cases automatically generated from a larger sample of synthetic
models obtained through stochastic generation [11]. We com-
pare SART with other STCS techniques, and both analyses re-
veal promising results regarding SART’s capabilities, and some
drawbacks limiting our selection algorithm. For instance, even
though a high modification coverage is achieved, SART shows
no significant improvement regarding transition coverage with
respect to the compared techniques. At the same time, all in-
vestigated techniques revealed the same number of faults in our
case study, indicating that SART manages to provide similarity-
based test case selection, but unlike existing STCS techniques,
it targets selection of modification-traversing test cases.

The remainder of our paper is structured as follows. Sec-
tion 2 presents the MBT concepts and the type of model used in
our MBT approach, whereas Section 3 presents the background
to specification-based regression testing. Then we present de-
tails on SART’s selection strategy (Section 4), followed by Sec-
tion 5 describing our empirical evaluation. Related work is dis-
cussed in Section 6 and, finally, we draw conclusions and dis-
cuss future work in Section 7.

2. Model-based testing

Model-based regression testing relies on model-based testing
(MBT) approaches to enable the use of software models in or-
der to automate the generation and selection of test cases. The
goal is to use techniques based on different coverage criteria to
systematically harness information from models (code or spec-
ification levels) and then generate, manage or even execute test
cases. Thus, tools can be developed to automatically analyse
and explore the SUT and discover intrinsic testing scenarios
that, otherwise, would have been hard to identify. On the other
hand, much of those testing scenarios can be redundant or even
irrelevant for regression testing.

Our work focuses on test cases describing software system
behaviour, thus our test cases are usually described in natural
language and need to be executed manually (i.e. abstract test
cases). Although there is a difficulty in tracing abstract test
cases to the respective executable code parts, it is easier to iden-
tify which functionality or use case scenarios are being tested.

3TestLink (www.testlink.org) is a tool for test artifact management, and
test suites can be exported as XML files.

4We here use the word defect as defined by IEEE Std. 29119-1:2013(E)

The specification model used in the case study presented in
this paper is a labeled transition system (LTS) model that can be
obtained, for instance, from use case documents to provide an
intermediary model format for automatic test case generation
(an example of LTS is shown Figure 1) [12]. An LTS is defined
as a 4-tuple S = (Q; A; Ttr; q0), where: Q is the set of states,
q0 ∈ Q being the initial state; A is a finite non-empty set of
labels; Ttr is a transitions relation where Ttr ⊆ (Q × A × Q),
such that (qa, l, qb) ∈ Ttr is a transition with a source (qa) and
sink (qb) state, and a label (l).

Internal and external actions can be represented in an LTS,
but since we are focusing on functional system testing, the tran-
sitions will represent interactions between the user and the sys-
tem (we will refer to steps as a pair containing one user ac-
tion and the correspondent system’s response). Annotations are
used on the LTS (Annotated LTS, or simply ALTS) to mark
these special types of interactions. As a result, the sequences of
transitions from ALTS become our test cases. The simplicity of
LTS also allows it to be used as an underlying semantics model
for other formalism (e.g. finite state machines). For an in-depth
look and a better understanding of an LTS we refer to Jard and
Jéron [13].

3. Specification-based regression testing

Let P be a baseline version of the program, and P′ be the
next version (i.e. delta version) of P. In turn, S and S ′ are,
respectively, the baseline and delta specifications for P and P′.
The test suite used to test P is referred to as T , while T ′ is the
test suite used to test P′. Throughout this work, T and T ′ will be
referred as baseline test suite and delta test suite, respectively.

Our selection strategy (SART) focuses on progressive
regression testing, where modifications are performed on a
specification model and the goal is to select all test cases that
exercise parts of the system that have been modified in S ′

(compared to S). For instance, [3] and [6] state that test cases
traversing modifications, named modification-traversing test
cases, are more likely to detect regression defects. Two types
of modifications are considered here, the addition and removal
of model elements (transitions and states) in the specification
models. More complex modifications can be expressed as
a combination of these two [1, 14]. That being said, those
modifications affect the possible paths, and consequently, the
scenarios being tested. Accordingly, Leung and White classify
test cases for regression testing as [5]:

Obsolete test cases cannot be executed anymore due to an
invalid input/output relationship, or for traversing a removed
part of S or P.
Reusable test cases exercise unmodified parts of the specifi-
cation and their correspondent unmodified program construct.
Since no modification is exercised, the same result is expected.
Retestable test cases exercise unmodified parts of the speci-
fication and may present a different result. For example, test
cases exercising unchanged parts of S ′ but with new program
constructs (e.g. boundary values).
New-structural test cases are structural test cases for new

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

program constructs.
New-specification test cases exercise the modified parts of the
specification by executing new code in P′.

Distinguishing these classes of test cases at a system’s spec-
ification level can be challenging, because information from
source code may not be accessible from specification models
(e.g. the program construct). Briand et al. [15] and Fourneret
et al. [7] adapted Leung and White’s classification to consider
UML designs in order to handle a finer grained classification at
a higher level of abstraction. Similarly, we adapt the classifica-
tion to consider that retestable test cases are sequences of steps
that remain the same but at least one of the labels of those steps
has changed (i.e. no addition or removal of steps happened, just
changes in the label). In turn, unchanged sequences and labels
will be considered as reusable test cases, whereas the definition
for new-specification remains the same. Here we do not ad-
dress new-structural test cases because our models contain only
behavioural information.

In turn, classification and selection of obsolete test cases is
challenging and yet very important. If executed, an obsolete
test case will fail not because of a regression defect, but due
to an attempt to execute removed parts of the software system.
Thus, maintenance to identify and remove these test cases from
the test suite is required. Nonetheless, removals can also cause
regression defects. For example, an inappropriate removal may
cause the SUT to reach a state that should not be reached ac-
cording to the new specification [1].

By classifying and selecting test cases we alleviate the costs
incurred in regression testing, but some scenarios may not be
executed and some defects may not be detected. It is important
not to compromise defect detection rates, since correcting de-
fects after software release is expensive and risky. Therefore,
the costs to select and execute the subset have to be smaller
than the costs to retest all. Otherwise, the retest-all approach is
obviously recommended [6].

Unlike other specification-based regression testing tech-
niques, SART applies similarity-based test case selection
(STCS) to identify obsolete, reusable and modification-
traversing test cases. The goal with STCS is selecting the most
diverse test cases based on the assumption that a diverse sub-
set has a higher defect detection rate [8, 9]. This diversity is
then obtained by similarity measurements among each pair of
test cases. Considering that each test case is a vector of ele-
ments (e.g. code statements, model transitions, system condi-
tions, user actions), similarity functions can be used to assign
values determining the distance between two vectors, such that
close vectors indicate a pair of similar test cases. The challenge
then becomes choosing appropriate similarity functions and en-
coding strategies for specific testing contexts [9].

4. A similarity approach for regression testing

The similarity approach for regression testing (SART) is a
test case selection technique to automatically identify test cases
exercising new, modified, or affected parts of the specifica-
tion model using only information from test cases. In sum-

Model
(S)

Model
(S’)Modifications

CreateTest
Cases

Abstract
Test Cases

(T’)

Abstract Test Cases
(T)

System
(P’)

Development

SART Regression
Test

Test Results

Selected Subset
(Ts)

Baseline Delta

Release

Needs
Fixing?

Yes

No

Figure 2: Example of a test process suitable for SART.

mary, SART compares two sets of test cases from a baseline
and a delta version of the specification model. Since test cases
are described through steps (e.g. sequences of transitions from
the model) comparing the similarities enables testers to iden-
tify changes in the specification (S). Our main assumption is
that very different sets (i.e. with low similarity) indicate that
extensive modifications were performed to a point where the
sequences of steps have significantly changed.

Usage of our selection strategy alone on a pre-defined set of
test cases allows automatic selection of the desired subset, but
when combined with automatic test case generation, the tech-
nique becomes even more powerful since comparison between
test cases covering all paths traversing the model can be per-
formed automatically (details in subsection 4.3). Before pre-
senting details regarding SART’s execution, we present how the
technique can be used in an MBT process (Figure 2).

After changing the functionality of the system, a new version
of the specification is defined, hence a new specification model
is obtained. In an MBT context, we assume that there are tech-
niques (either manual or automatic) for creating test cases from
the specification model, and since we target high level specifi-
cation models we provide as input for SART sets of abstract test
cases. Usually, these test suites tend to be big and redundant [4],
and test case selection is often needed. In order to illustrate how
SART selects test cases, we provide an illustrative example.

4.1. Illustrative example

The example is a use case specification for a simple contact
list application from a mobile phone (ALTS model in Figure 3).
The use case has two scenarios: Add or edit a contact. Editing
allows removal of one or several contacts, whilst a new contact
can be added by inserting the contact’s information or to import
it from a different source (e.g. an e-mail contact, or a social
network database).

Eventually, the specification is changed to incorporate three
modifications: (1) The deletion of only one contact has been

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

1

4

5

2

3

6 8

7

9

10

11 13

15

16

17

18

19

20

? Start “Contacts” Application

? Choose “Edit” Option

? Choose one

contact and press

“Remove” button

? Choose more than

one Contact and press

“Remove” button.

! “Main Screen” is shown

! List of Contacts is shown

! Selected contacts

are removed.

!Selected contacts

are removed.

? Press “Save”

button.

? Choose “Add”

option.

? Press “Cancel”

button.

? Fill in

the form

? Select

“New”

? Choose

“Import”

? Select an

existing contact

! List of options

is shown.

! The confirmation

screen is shown.

! Application is

closed.

? Confirmation buttons

are enabled.

? Press the

“Exit” button.

! Form with contact

information is shown
12 14

! List of

contacts is

shown.

0

1

4

5

2

3

6

9

11 13

? Start “Contacts” Application

? Choose “Edit” Option

! “Main Screen” is shown

! List of Contacts is shown

! Selected contacts

are removed.

? Press “Save”

button.

? Choose “Add”

option.

? Press “Cancel”

button.

? Select

“New”

? Choose

“Import”

? Select an

existing contact

! The confirmation

screen is shown.

! Confirmation buttons

are enabled.

! Form with contact

information is shown

14

? Select one contact

and Press “Update”

option

! Contact’s form

is shown.

! Contact is

saved on device

and linked

accounts.23

! List of

contacts is

shown.

17

18

? Choose more than

one Contact and

press “Remove” button. 21

? Fill in

the form

? Press “Save and

Export” button.

22

12

19

20

! Application

is closed.

? Press the

“Exit” button.

16

! List of options

is shown.

10

15

Figure 3: Examples of ALTS specification models and the model elements affected by model’s modifications. Transitions’ labels starting with ‘?’ indicate a step,
whereas ‘!’ indicate an expected system output.

removed. (2) An option to update a contact’s information is
added. (3) Export a contact’s information to a different contact
list (e.g. e-mail). These modifications respectively impact the
model as following: (1) Removal of transitions: (4, “Choose
one contact and press ‘Remove’ button”,7) and (7, “Selected
Contacts are Removed”,8); (2) Addition of transitions: (4, “Se-
lect one contact and press ‘Update’ option.”,21) and (21, “Con-
tact’s form is shown.”,12); (3) Addition of transitions: (16,
“Press ‘Save and Export’ buttons’.”,22) and (22, “Contact is
saved on device and linked accounts”.,23).

Based on Korel’s et al. description of interaction patterns
from modifications [1, 14], we consider two situations where
regression defects can be triggered: (1) the modified element
itself can affect software behaviour, or (2) a behaviour specified
near a modification can be affected as a side-effect of modifi-
cations. Since modifications can affect states, we assume that
branching states5 are sensitive to these modifications because
a defect on that branch state can cause the system to reach a
different, unexpected state. Consequently, the system will not
produce the corresponding output for the performed user action.

In order to address these side-effects, we consider that re-
gions near modifications comprise the modified model ele-
ments themselves and the steps from the same level of the mod-
ified element6. Hence, let S and S ′ be the baseline and delta
version of the LTS model, while Ttr,Q, L and T ′tr,Q

′, L′ are re-
spectively, the set of transitions, states and labels from S and
S ′. Next we define a modified state (qm), a modified transition
(−→t m) and the region affected by a modification (i.e. set of transi-
tions affected by qm and −→t m). Consider that qm ∈ (Q∪Q′), and−→
t m can either belong to the set of added or removed transitions,

5States with more than one outgoing transition.
6The level is the longest distance between the current and the initial state.

named respectively Ttr:add and Ttr:rem.

−→
t m ∈ Ttr:add ⇐⇒ −→

t m < Ttr ∧ −→t m ∈ T ′tr;−→
t m ∈ Ttr:rem ⇐⇒ −→

t m ∈ Ttr ∧ −→t m < T ′tr;

Therefore, in order to define the set of affected regions7

(named Ttr:reg) in S ′, consider that −→t 1,
−→
t 2 ∈ T ′tr, q1, q2 ∈ Q′

and la, lb ∈ L′:

Ttr:reg = {−→t 1,
−→
t 2 | −→t 1 = (qm, la, q1),−→t 2 = (q1, lb, q2)};

In other words, the affected region is the set of all pairs of
consecutive transitions −→t 1,

−→
t 2 such that −→t 1 starts at a modi-

fied state (qm). For example in Figure 3, given that state 16
was modified, the affected region will include the transitions
(16, “Press the ‘Exit’ button.”,19) and (19, “Application is
closed.”,20) as respectively, −→t 1 and −→t 2. The remaining af-
fected regions are marked in Figure 3 as solid white edges.
Similarly, the modified states (Qm) are shaded and the added
and removed transitions (Ttr:add,Ttr:rem) are represented by dot-
ted white edges. In summary, we aim at covering all of them
(the shaded background) in our selected subset.

We changed labels from Figure 3 to provide a more com-
pact compact version of the model (Figure 4a). In addition, we
will use the test suites (defined manually by traversing the LTS
models) (Figures 4b and 4c).

4.2. SART’s selection strategy

Since each of our abstract test cases are represented as a vec-
tor of steps from the ALTS model, a similarity function is used

7To keep the explanation simple, we decided to consider only the set of
affected transitions, since affected states can be found through each affected
transition.

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

1

4

5

2

3

6 8

7

9

10

11 13

15

16

17

18

19

20

a

c

ge

b

d

f h

o

i

v

m

k q

s

j

p

u

n

t

l

12 14

r

0

1

4

5

2

3

6

9

10

11 13

15

16

17

18

a

c

we

b

d

f

o

i

v

m

k q

s

j

p

u

n

t

l

14

r

12

x

21

19

20

22

23

y

z

Baseline Delta

(a) Compact version of the specification model.

Baseline Test Suite - T

TC1 a b c d e f

TC2 a b c d g h

TC3 a b i j k l m n o p

TC4 a b q r s n o p

TC5 a b k m n v k m n u t

TC6 a b k m n v q r s n u t

TC7 a b q r s n v k m n o p

TC8 a b q r s n v q r s n o p

(b) Baseline test suite.

Delta Test Suite – T’

TC’1 a b c d e f

TC’2 a b c d w x m n y z

TC’3 a b c d w x m n v k m n y z

TC’4 a b c d w x m n v q r s n o p

TC’5 a b i j k l m n y z

TC’6 a b q r s n y z

TC’7 a b k m n o p

TC’8 a b q r s n o p

TC’9 a b q r s n u t

TC’10 a b k m n v k m n u t

TC’11 a b i j k l m n v j q r s n u t

TC’12 a b k m n v q r s n o p

TC’13 a b k m n v q r s n y z

TC’14 a b i j q r s n v j q r s n o p

TC’15 a b i j q r s n v j k l m n u t

TC’16 a b q r s n v k m n o p

(c) Deta test suite.

Figure 4: Simplified artefacts obtained from our example.

to determine which pair of test cases have similar steps. SART
uses an adapted version of the similarity function proposed by
Cartaxo et al. [8] (the original function is presented in Section
5) because it presented beneficial results in early executions
with SART and with the accompanying selection of test cases
generated from ALTS. Below we present the steps for SART’s
selection strategy that will be used in our example:

1. Use T and T ′ to build a similarity matrix;
2. Classify test cases in: reusable, targeted or obsolete;

Table 1: Similarity matrix from test suites of Figure 4. Note that the first row
lists the original unmodified test cases.

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

TC′1 1 0.667 0.250 0.250 0.182 0.182 0.182 0.182
TC′2 0.500 0.500 0.400 0.300 0.308 0.308 0.231 0.231
TC′3 0.545 0.545 0.769 0.231 0.625 0.625 0.563 0.375
TC′4 0.364 0.364 0.538 0.692 0.438 0.625 0.688 0.688
TC′5 0.500 0.500 0.500 0.700 0.769 0.615 0.769 0.385
TC′6 0.250 0.250 0.500 0.800 0.385 0.615 0.615 0.615
TC′7 0.250 0.250 1 0.700 0.615 0.615 0.769 0.538
TC′8 0.250 0.250 0.700 1 0.385 0.615 0.769 0.769
TC′9 0.250 0.250 0.500 0.800 0.538 0.769 0.615 0.615

TC′10 0.182 0.182 0.615 0.385 1 0.813 0.688 0.500
TC′11 0.182 0.182 0.615 0.385 0.813 1 0.875 0.688
TC′12 0.182 0.182 0.769 0.769 0.688 0.875 1 0.813
TC′13 0.182 0.182 0.615 0.615 0.688 0.875 0.875 0.688
TC′14 0.182 0.182 0.538 0.769 0.500 0.688 0.813 1
TC′15 0.182 0.182 0.615 0.615 0.750 1 0.875 0.688
TC′16 0.182 0.182 0.769 0.769 0.688 0.875 1 0.813

3. Select test cases: t′j ∈ T ′

(a) Removals: similar to obsolete test cases;
(b) Additions: covering new scenarios from S ′;

4. Remove redundancies through test suite minimisation;
5. Include dissimilar reusable test cases;
6. Export resulting subset Ts;

The inputs for SART are T and T ′, and the output is Ts ⊆
T ′, hence no obsolete test cases are selected removing the need
for test suite maintenance to identify and remove outdated test
cases. The first step is to build the similarity matrix, which
contains information between all pairs of test cases (t j, t′i) | t j ⊆
T, t′i ⊆ T ′. The baseline test cases are placed in the columns of
the matrix, while delta test cases are placed in the rows. Each
position a[i, j] of the matrix is filled with the similarity values
calculated through Equation 1.

a[i, j] =
nit(t′i , t j)

AvgSize(t′i , t j)
; AvgSize(t′i , t j) =

|t′i | + |t j|
2

. (1)

The function nit counts the number of identical transitions
between a test case from T and T ′. Here, identical transitions
(or steps) is a pair of transitions with the same source and sink
state, and the same label. This value is divided by an average
of sizes (i.e. number of transitions) in order to normalize the
ratings among all similarity values.

The resulting value (e.g. 0.80, for TC′6 and TC4) is then
placed in the respective row (6) and column (4) of the matrix.
Furthermore, the similarity value “1” indicates that an identical
sequence is found in both test suites. Therefore, all transitions
are the same and no modification is exercised, so this is a candi-
date to be removed from the test suite (that can be seen by cal-
culating the similarity between TC1 and TC′1). Table 1 shows
all similarity values calculated in our example.

The next step is to analyse the similarity values and classify
test cases as:

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Obsolete (Tobs): Identified through columns that do not have a
similarity value of 1 (TC2).
Reusable (Treus): Rows containing a similarity value of 1
indicate unchanged sequences of transitions already tested in a
previous version, thus a reusable test case (TC′7, TC′8, TC′10,
TC′11, TC′12, TC′14, TC′15, TC′16).
Targeted (Ttarg): Contains new specification and also test
cases that were not executed before. They can be identified
through rows that do not have a similarity value of 1 (TC′2,
TC′3, TC′4, TC′5, TC′6, TC′9, TC′13).

After the classification is concluded, we select test cases
that exercise added (targeted test cases) and removed (obsolete)
parts of the specification model. Note that an obsolete test case
cannot be executed on the SUT, hence SART chooses to select
delta test cases very similar to obsolete test cases. This enables
execution of similar sequences of paths where a removal has
occurred.

First, the delta test cases most similar to each respective ob-
solete test case are added to the subset. In this example, there is
only one obsolete test case (TC2), thus, the highest similarity
value of the respective column is obtained (0.667), resulting in
the selection of TC′1. Note that TC′1 exercises a very similar
sequence to TC2 (both in transitions exercised and in size), es-
pecially since TC′1 also traverses State 4, where a transition’s
removal occurred.

Next, we add all targeted test cases to a subset resulting in:
Taux = {TC′1, TC′2, TC′3, TC′4, TC′5, TC′6, TC′9, TC′13}.
As can be seen all modifications have been covered, but note
that several test cases repeatedly cover the same transitions (i.e.
redundant test cases). The solution is applying test suite mini-
mization to select the minimum set of test cases that cover all
transitions of our current subset [3].

We chose the H heuristic [16] for our minimization step be-
cause it has shown good results for revealing defects in an MBT
process similar to ours [17]. Firstly, the heuristic defines a car-
dinality table where each cardinality corresponds to the number
of test cases covering a specific test requirement (TR), or in our
case, a single transition from the subset. Then, the test cases
covering the lowest cardinality TR are included in the reduced
subset to ensure coverage of requirements being covered only
by a specific test case (named essential test case). As test cases
are included, all the respectively covered TRs are marked.

After defining the traceability and cardinality tables (Ta-
bles 2 and 3), we include the test cases covering most re-
quirements from each cardinality set until all requirements
are marked. If there is a tie among the test cases, the
next cardinality is examined. From our example, we begin
with an empty reduced subset Tr and then investigate cardi-

nality 1 for requirements −→e ,−→f ,−→o ,−→p ,−→t ,−→u . The test cases
covering the TR at this cardinality are TC′1,TC′4,TC′9,
resulting in an addition of TC′4 for covering more TRs
among them (last row of Table 2). Consequently, TRs
−→a ,−→b ,−→c ,−→d ,−→w ,−→x ,−→m,−→n ,−→v ,−→j ,−→q ,−→r ,−→s ,−→n ,−→o ,−→p are all marked
as covered — see Column TC′4 in Table 2. Continuing with
unmarked TRs at cardinality 1, test cases TC′9 and TC′1 are

Table 2: Traceability between test requirements and test cases.

TR
Test Cases Number of

Test CasesTC’1 TC’2 TC’3 TC’4 TC’5 TC’6 TC’9 TC’13

a x x x x x x x x 8
b x x x x x x x x 8
c x x x x - - - - 4
d x x x x - - - - 4
e x - - - - - - - 1
f x - - - - - - - 1
i - - - - x x x x 4
j - - x x x x x x 6
k - - x - x - - x 3
l - - x - x - - x 3

m - x x x x - - x 5
n - x x x x x x x 7
o - - - x - - - - 1
p - - - x - - - - 1
q - - - x - x x x 4
r - - - x - x x x 4
s - - - x - x x x 4
t - - - - - - x - 1
u - - - - - - x - 1
v - - x x - - - x 3
w - x x x - - - - 3
x - x x x - - - - 3
y - x x - x x - x 5
z - x x - x x - x 5

Table 3: Cardinality of each test requirement from Table 2.

Cardinality 1 3 4 5 6 7 8

TR
e, f, o,
p, t, u

k, l, v,
w, x

c, d, i,
q, r, s

m, y, z j n a, b

added to the reduced subset. The next cardinality is 3 with un-

marked TRs
−→
k ,
−→
l resulting in choice of TC′13. After this, all

TRs become marked concluding our minimization stage with
subset: Tr = {TC′4,TC′1,TC′9,TC′13}.

So far, all transitions of the subset have been covered with
half the number of test cases. However, as mentioned earlier,
some regression defects may be triggered as side-effects from
nearby modifications. In order to cover the side-effect regions,
we fill the gaps left from removing redundant test cases with
reusable test cases similar to our reduced subset. By keeping
a constant similarity analysis, we ensure that our test cases are
still near the modifications, even if not covering the modifica-
tions themselves.

The technique then proceeds by calculating a new similarity
matrix (Table 4) between Tr (rows) and Treus (columns). Next,
we search for the highest similarity value in each row (random
choice is used for tie breaks) and then add the respective col-
umn to our final subset followed by the removal of that column

Table 4: Similarity matrix from the reduced subset and the reusable test cases.

TC′7 TC′8 TC′10 TC′11 TC′12 TC′14 TC′15 TC′16

TC′1 0.25 0.25 0.18 0.18 0.18 0.18 0.18 0.18
TC′4 0.46 0.61 0.43 0.62 0.75 0.68 0.62 0.56
TC′9 0.5 0.8 0.53 0.76 0.61 0.61 0.76 0.61

TC′13 0.61 0.61 0.68 0.87 0.87 0.68 0.87 0.87

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

from our new matrix in order to avoid repetitive selection of the
same set of similarity values. From Table 4 we begin at row
TC′1 by finding a tie (0.25) between TC′7 and TC′8, resulting
in (random) selection and removal of column TC′8. We pro-
ceed with analysis of TC′4,TC′9,TC′13 resulting in selection
of TC′12,TC′15,TC′11 respectively.

At this point the size limit is reached and SART’s output
for our example is: Ts = {TC′1, TC′4, TC′9, TC′11, TC′12,
TC′13, TC′15}. If there were more slots to fill, the technique
would return to the first row and repeat the process, until the
gaps are filled or all reusable test cases are removed from the
matrix. As can be seen, both the modifications and regions
shown in Figure 3 are being exercised by our selected subset,
increasing our chances of revealing regression defects.

4.3. Combining automatic test case generation and selection
Test case selection refers to selection of a subset of test cases

according to specific criteria. Therefore, selection assumes the
existence of an initial set of test cases. There are different
strategies to obtain an initial test suite that vary from complete
manual creation of test cases to using automatic tools to cre-
ate test cases from software artefacts. In MBT, automatic test
case generation is widely used since information is provided on
model artefacts. In turn, model-based regression testing bene-
fits from automatic re-generation of test suites from modified
models so that model modifications reflected in the generated
test suite [1, 14].

Therefore, automatic test case generation can improve
SART’s performance if the test suites are generated from dif-
ferent versions of the same model (S and S ′). Since test case
generation often relies on a coverage criteria to traverse models
[18], using different coverage criteria when generating regres-
sion test cases may yield inconsistencies in test artefacts, thus
risking to also affect the selection technique’s performance. For
instance, if a tester uses different criteria to obtain T and T ′,
SART will classify some test cases in T ′ as targeted even if
they do not cover modifications, simply because they were not
executed in S due to usage of a different criteria to generate T .

SART is implemented in an updated version of LTS-BT [19]
along with other test case generation, prioritisation, minimisa-
tion techniques from different researchers. Therefore, it can
easily be combined with automatic test case generation based
on full transitions coverage. Nonetheless, we reinforce that
SART receives as input test suites T and T ′ assuming that they
represent test suites from different versions of the SUT.

Due to our proposed MBT context (Figure 2), we present
SART’s selection, evaluation and conclusions correlating them
to model elements (states and transitions), but similarity func-
tions are general [9]. Thus, Equation 1 can be used with differ-
ent test information (e.g. post-conditions, pre-conditions, user
actions). Note that ideally, any test case selection technique
must execute independent of the generation strategy assuming
only the existence of a test suite [18, 3]. Nonetheless, litera-
ture encourages to combine test case generation and selection
techniques especially if the generated test suite is highly redun-
dant, which is also ideal for similarity-based test case selec-
tion [18, 8].

5. Evaluation of our selection strategy

Our goal with this evaluation is to measure the trade-off be-
tween size reduction and defect detection rate achieved in order
to determine whether the technique can be adopted in practice.
We define our evaluation using the Goal, Questions and Metrics
(GQM) framework in order to answer RQ1 and RQ2.

• Goal: Evaluate and compare SART’s performance

• Questions:

– RQ1: Can we use SART and still reveal defects with
a smaller test suite?

– RQ2: How does SART compare with other STCS
techniques?

• Metrics:

– Defect detection capability;

– Size reduction;

– Coverage criteria;

By measuring coverage and the number of detected defects,
we can see whether the technique reduces the number of test
cases, reveals defects and achieves reasonable test coverage.
Note that both metrics are measured with respect to the size
reduction, i.e. the selected subset. We also discuss safety, pre-
cision, generality and efficiency of techniques, as suggested
in [6, 9, 7]. Ideally we need a large sample of specifications
to statistically analyse the investigated techniques and achieve
conclusive results. However, as is common in our field of re-
search, availability of industrial artefacts (e.g. specifications,
data about revealed defects) is limited.

Therefore, we divide our evaluation into a case study and an
experiment to investigate, respectively, RQ1 and RQ2. First we
investigate SART in an MBT selection process where a sub-
ject (e.g. a tester) manually selects test cases to test an indus-
trial SUT. Then, we use stochastic generation of models [11]
to analyse performance regarding coverage of transitions and
modifications in a larger sample of artefacts.

Each evaluation has a different setup and provides comple-
mentary information regarding SART’s performance. All tech-
niques and the experiment were run on the same computer, with
6GB RAM, and an Intel R© CoreT M i5-2410M processor. Appli-
cation of all the techniques investigated in this section is simple
and straightforward since they are based on well defined math-
ematical formulas and algorithms existing and provided in lit-
erature. Therefore, there are no complex configuration of an
experimental environment, technique’s dependencies or train-
ing to the experimenters.

5.1. Case study–Industrial artifacts

We want to compare SART’s defect detection capabilities
with two different situations in an MBT process: (i) A tradi-
tional manual test case selection in an MBT process; (ii) Usage
of different automatic test case selection techniques. The for-
mer allows us to see whether SART has benefits over an expert’s

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

selected subset, whilst the latter allows to compare whether
SART has better performance than existing techniques. To sim-
plify our execution and avoid construction validity threats we
compare SART only with similarity-based test case selection
techniques.

5.1.1. Similarity measures
Besides SART, the automatic STCS techniques that we use

are different distance measures for similarity-based test case se-
lection, and random selection of test cases (RDM) as a con-
trol group. The distance measures are: Counting function (CF),
Levenshtein distance (LVS), Jaccard index (JAC), Gower Leg-
endre (GOW) and Sokal Sneath (SOK). We chose those five
measures because they are quite disparate and have been used
in a previous investigation of STCS [9]. In the end, it led us
to compare SART with not only a manual selection but also
different automatic test case selection techniques.

SART is an adaptation of the counting function (CF) pro-
posed by Cartaxo et al. [8] that counts the number of repeated
steps in a test case divided by the average size of the test cases
(see Equation 2). Unlike the other measures used in this study,
CF and SART consider both the content and length of a test
case. The main difference is that SART counts repeated steps
on test cases of different versions of a test suite. Considering
t′i , t
′
j ∈ T ′:

sim(t′i , t
′
j) =

nit(t′i , t
′
j)

AvgSize(t′i , t
′
j)

; AvgSize(t′i , t
′
j) =
|t′i | + |t′j|

2
. (2)

We choose the Levenshtein distance (LVS) to compare SART
to a technique targeting textual information on test cases. LVS
is based on the edit distance between two strings8. We use
strings from test cases to calculate the edit distance, the result-
ing value is then the similarity degree. Comparison between
LVS and the remaining techniques is important since our ab-
stract test cases are written in natural language, and other tech-
niques (SART included) consider different aspects besides the
text information, such as the set of steps removing all redundan-
cies, or unchanged steps from previous versions of the SUT.

Additionally, we compare SART to techniques that anal-
yse information besides textual description of test cases. JAC,
GOW and SOK belong to a family of measures based on dif-
ferences and commonalities between information. In our case,
the input is a pair of test cases and their corresponding transi-
tions (either a user action or a system’s expected result). As
presented in [9], the formula to calculate similarity using JAC,
GOW and SOK is:

sim(t′i , t
′
j) =

|t′i ∩ t′j|
|t′i ∩ t′j| + w(|t′i ∪ t′j| − |t′i ∩ t′j|)

(3)

The three measures differ on the value assigned to w (Equa-
tion 3) indicating the different weights given to the amount of

8We refer to operations in string to transform t′1 in t′2 by changing (c), remov-
ing (r) or adding (a) a char. The distance is the sum of operations performed.

Table 5: Data regarding industrial artefacts informing the number of states (S),
transitions (T), additions (Add) and removals (Rem), and the number of delta
test cases (|T ′ |) created for each model.

Models
Baseline Version Delta Version Modifications |T ′ |
S T S T Rem Add Total

Model 1 11 11 10 9 3 1 4 3
Model 2 22 24 20 21 5 2 7 14
Model 3 32 33 28 28 6 1 7 16
Model 4 32 38 22 25 13 0 13 67

information differing between test cases9. The indices values
for JAC, GOW and SOK are, respectively, w = 1, w = 1/2,
w = 2. Consequently, each function yields a different simi-
larity value such that, for the same pair of test cases provided,
GOW > JAC > S OK. We choose those three indices to enable
analysis of the nuances of the differences between test cases (in
complement to the similarity analysis incorporated in SART,
simply comparing past information with the new one).

Unlike SART, none of the measures above compare test cases
from T ′ to test cases from T . As an example, consider t′1 =

[a, b, c, d, b, c, e] and t′2 = [a, b, x, y, z], such that |t′1 ∪ t′2| = 8,
|t′1 ∩ t′2| = 2. Then10:

S ART (t′1, t
′
2) = 2/[(7 + 5)/2] ≈ 0.33

CF(t′1, t
′
2) = 2/[(7 + 5)/2] ≈ 0.33

LVS (t′1, t
′
2) = 3c + 2a = 5

JAC(t′1, t
′
2) = 2/[2 + (1 × 6)] ≈ 0.25

GOW(t′1, t
′
2) = 2/[2 + (0.5 × 6)] ≈ 0.40

S OK(t′1, t
′
2) = 2/[2 + (2 × 6)] ≈ 0.14

5.1.2. Objects and execution

Our case study uses artefacts from industry, obtained from a
collaboration between practitioners from Ingenico and our re-
search group where an MBT process is used to test a software
system that collects and processes biometrics information. We
use four specification models (use case templates) that were
modified during release of a new version of the software sys-
tem to meet new requirements. As part of our MBT process,
we generate ALTS models from those use case templates.

Due to confidentiality agreements, we are not able to present
the industrial models. Instead, we present the number of states,
transitions and modifications in each ALTS to illustrate their
size (Table 5). Model 1 and Model 2 are small, whereas Model
3 and Model 4 are bigger and have more complex interactions
(e.g. more branches and paths with loops in the ALTS).

From each ALTS, we automatically generate test cases11, in
turn, manually executed by practitioners. All execution data
(reports of failures and defects) was provided to our case study.

9Note that |t′i ∪ t′j | − |t′i ∩ t′j | is the number of steps differing between t′i and
t′j, i.e. all information of both test cases minus the commonalities.

10Note that SART is only different from CF if it analyses similarities between
ti ∈ T and t′j ∈ T .

11We use a simple depth-first search (DFS) algorithm to traverse all paths of
the ALTS under a one-loop-coverage criteria [18].

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

1

2

3

4

5

6

Model 1 Model 2 Model 3 Model 4

N
um

be
r o

f D
ef

ec
ts

Manual SART CF LVS JAC GOW SOK RDM

(a) Number of detected defects.

0

2

4

6

8

10

12

Model 1 Model 2 Model 3 Model 4

Su
bs

et
 S

iz
e

(n
um

be
r o

f t
es

t c
as

es
)

Manual SART CF LVS JAC GOW SOK RDM

(b) Sizes of selected subset.

0

20

40

60

80

100

Model 1 Model 2 Model 3 Model 4

Pr
ec

is
io

n
(%

)

Manual SART CF LVS JAC GOW SOK RDM

(c) Precision (defects) of selected subsets.

Figure 5: Comparison between investigated selection techniques using industrial artefacts.

Therefore, we do not alter or instrument any of the objects,
rather they are just input to the techniques. Finally, we apply all
selection techniques on the test cases and compare two depen-
dent variables: The size of the selected subset, and the number
of defects detected.

5.1.3. Results and analysis
The graphs in Figure 5 presents our results, discussed un-

der the perspective of safety, precision, generality and effi-
ciency [6]. As can be seen, all automatic selection strategies
(SART, CF, LVS, JAC, GOW, SOK and RDM) have similar re-
sults, because they: (i) reveal the same number of detected de-
fects (Figure 5a), (ii) select a test suite that is equal or smaller
than the manually selected test suite (Figure 5b), and (iii) are
only more precise than manual selection for models 2 and 3
(Figure 5c).

Moreover, recall for modifications is 100% for all selected
subset except for Model 1, but there is no significant difference
among the techniques. In addition, T ′ is relatively small in all
of them and several modifications were made, meaning that the
majority of the test cases cover modifications. Therefore, in
practice, a retest all approach could be more beneficial. In turn,
the precision of techniques vary according to the model. For
instance, a high precision is seen in Model 3 (100% precision)
opposed to a low precision in Model 2.

Results for safety and precision vary based on models be-
cause their corresponding test suites are still too few and small
to provide general results for safety and precision. Therefore
the generality of our case study is small since our availability
of artefacts is too limited (in quantity and diversity12) to allow
generalization.

Since all techniques present a similar performance, we mea-
sure efficiency based on the time to select test cases. For in-
stance, our subject (tester) used four hours to manually select
the subsets. Meanwhile, all automatic techniques (SART, CF,
LVS, JAC, GOW, SOK and RDM) selected all subsets in less
than 200 milliseconds and still revealed the same defects. Thus,
the time invested by the tester can be better spent in test report

12Ideally, we would like to experiment on numerous test suites from different
domains.

and analysis. Besides being a very time consuming process, the
manual selection is laborious and tedious, since most test cases
have similar sequences that can even be confusing.

The main contribution of this case study is that SART can be
as good as known automatic selection techniques, even though
our results are limited and lack generalisation. Moreover, our
objects are fairly small ALTS models when compared to large
and complex models. Consequently, the small test suites ob-
tained from those models could not fully benefit from using an
automatic strategy with coverage criteria, thus hindering com-
parison between SART and the other STCS techniques. Thus,
we decide to execute an experiment using more models and dif-
ferent coverage criteria to identify differences among the selec-
tion techniques.

5.2. Experimental study—Investigating coverage

The goal of this experiment is to compare the coverage capa-
bilities of the different selection techniques from our case study.
More specifically, we search for evidence indicating whether
SART is able to cover modifications performed on a specifica-
tion model, despite the size reduction. To overcome the limi-
tations in our previous study, we require a large (yet control-
lable) sample of specification models; but unfortunately, we
lack availability of such sample. Therefore, we decide to use a
stochastic model generation based on search-based generation
of models for technology evaluation [11].

We use the same generator tool described by Oliveira Neto et
al. where instances of ALTS models are automatically created
and modified [11] based on data from industrial artifacts. That
allows us to strike a balance between generalization and statis-
tical power, as recommended by Arcuri and Briand [20] (where
the number of artefacts should be at least ten). We create in-
stances of models, named synthetic models, using a generator
tool that systematically combines transitions and states in small
components named patterns. In order to generate realistic sam-
ples of models, our generated sample share characteristics (such
as size and layout of states and transitions) extracted from our
four industrial models. For a detailed description refer to [11].

Then we use automatic test case generation techniques to ob-
tain a large sample of test suites subsequently provided as input

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to the techniques. Therefore, we enable generation of a nu-
merous and controllable sample because the synthetic models,
although artificial, are similar to industrial models [11]. Conse-
quently, we can aim for statistical and practical significance of
results by executing the techniques in a larger number of differ-
ent artefacts, rather than repeatedly executing them on the same
set of artefacts.

Our dependent variables are: Transitions and modifications
coverage. The former is a widely used criteria to investigate test
case selection technique. Moreover, there are known studies
focused on transitions coverage for STCS techniques, which
helps in comparing SART with the other techniques [8, 9]. In
addition, the analysis of modification coverage allows us to see
whether the similarity measures are beneficial for identifying
modifications in specification-based regression testing.

To complement our analysis of modification coverage, we
measure the percentage of selected test cases that exercise the
modifications (i.e. targeted vs. reusable test cases), allowing us
to observe which techniques are more likely to trigger regres-
sion defects. In other words, the hypothesis is that exercising
a modification just once may be insufficient to trigger regres-
sion defects since interaction of different modified transitions
can trigger defects as side effect of a modification [1, 14].

In summary, let E be the set of transitions from the delta
ALTS and Ecov be the set of transitions covered by the selected
subset. Also, Qmod ⊆ Q is the subset of modified states in the
ALTS where qmod ∈ Qmod is a source state of a removed tran-
sition or a destination state of an added transition13. Regarding
a selected subset Tts, let Qmod:ts,Treus,Ttarg be, respectively, the
set of modified states exercised by Tts, and the sets of reusable
and targeted test cases. Thus, we define our three dependent
variables as following:

V1 =
|Ecov|
|E| ; V2 =

|Qmod:ts|
|Qmod | ; V3 = (

|Ttarg|
|Tts| ;

|Treus|
|Tts|))

Note that, in our analysis, we will refer to percentages of V1,
V2 and V3. In addition, our tools and artefacts comprise the set
of industrial specifications (presented in our case study) used to
generate the artificial models through the generator tool, while
our independent variables are the generated sample (objects),
the test case generation algorithm14, the generated test suites,
and the test case selection technique (factor). Our seven treat-
ments are the techniques used in the case study: SART, CF,
JAC, LVS, GOW, SOK and RDM.

Ideally, our dependent variables should also be analysed in
terms of rate of defect detection. However, that variable cannot
be measured in this experiment because defect data is unknown
for our synthetic models. One alternative would be to use mu-
tants, however that would provide inaccurate results since syn-
thetic models do not have enough information to elaborate fault
hypotheses and place mutants in the model [20]. Additionally,

13By reaching the destination state, we make sure that the added transition is
exercised, i.e. covered by the path.

14We used a simple depth-first search (DFS) to traverse all paths of the ALTS
(loops included) only once.

SART CF LVS JAC GOW SOK RDM

0
20

40
60

80
10

0

C
ov

er
e

dt
T

ra
ns

iti
on

st
(.

)

V1:tCov.toftALTStTransitions

(a) Transition coverage (V1).

0
20

40
60

80
10

0
C

ov
er

ed
 M

od
ifi

ca
tio

ns
 (D

)

SART CF LVS JAC GOW SOK RDM

V2: Cov. of ALTS Modifications

(b) Modification coverage (V2).

Targ Reus

0
2
0

4
0

6
0

8
0

1
0
0

Targ Reus Targ Reus Targ Reus Targ Reus Targ Reus Targ Reus

Pe
rc

en
ta

ge
 o

f T
es

t C
as

es

V3: Selection of Targeted and Reusable Test Cases

(c) Proportion between targeted and reusable (V3).

Figure 6: Boxplots for the investigated dependent variables.

our dependent variables allow analysis only under safety and
generality. Since all techniques take milliseconds to execute,
analysis under efficiency has no practical significance, as ob-
served in the case study. We do not analyse precision since
we argue in Section 4 that selection of reusable test cases can
be beneficial at our level of abstraction. Instead, we focus on
statistical and practical significance of our findings.

A prior power analysis15 reveals that j = 150 executions are

15By drawing 15 samples of specifications, the value of j was obtained using

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

necessary to achieve statistical significance. In summary, we
create j = 150 instances of models, each generation yields a
pair of ALTS (i.e. baseline and delta) with test suites (N = 300
test suites with different quantities of test cases). Ultimately, we
execute all 7 techniques 150 times yielding 1050 data points.
Results are presented in Figures 6a, 6b and 6c.

5.3. Statistical evaluation
During execution, each synthetic model yields a baseline and

delta suite with an average size of, respectively, 14 (σ = 1.95%)
and 15 (σ = 2.28%) test cases, which complies with the set of
four specifications that we use as seed for our generator tool16.
For all treatments, a test suite with 15 test cases is reduced to
an average size of 6 test cases (σ = 1.11%), hence reducing the
number of test cases by approximately 37%.

At first, V1 (Figure 6a) shows no significant improvement in
transition coverage for all STCS techniques when compared to
the random selection. Unfortunately, our sample of industrial
specification models are either small or medium, hence yield-
ing test suites with a small number of transitions to be cov-
ered. Consequently, by repetitively executing RDM, we can
cover most transitions without analysing similarities among test
cases. For example, most transitions (an average of 50–65%)
are still being exercised after removing nearly 67% of test cases.
However, note that SART has similar results when compared to
known STCS techniques with respect to transitions coverage.

Furthermore, results for V2 in Figure 6b confirm the main ad-
vantage of SART. Unlike the other remaining STCS and RDM
(an average of 65% coverage), SART was the only technique
being able to consistently cover all modifications (100%, thus
being a safe technique). Both RDM and the similarity-based
techniques have varied significantly (σ ≈ 20%) indicating that
they are not reliable when it comes to selecting modification-
traversing test cases.

V3 reinforces that evidence by showing (Figure 6c) that most
test cases selected by SART exercise the modified and af-
fected parts of the specification since a balanced proportion
between Targeted (µ = 57.67%, σ = 11.92%) and Reusable
(µ = 42.33%, σ = 11.92%) test cases are selected. The re-
maining techniques, on the other hand, predominately select
reusable test cases indicating that the modifications or affected
parts, even if covered, may not be executed with different com-
binations of scenarios during regression testing. Thus, it is less
likely to reveal regression defects.

In order to provide more consistent evidence to our visual
analysis regarding results from V1 and V2

17, we use some sta-
tistical testing on the collected data. Some of the intervals dis-
played in Figures 6a and 6b overlap meaning that a statisti-
cal test can provide conclusive evidence whether the treatments
(techniques) are indeed significantly different regarding our de-
pendent variables. We perform all tests in our data considering
a significance level of α = 0.05.

j = b
(

100σ
rµ j

)2
c presented in [21], for V1 and V2.

16Especially for Model 2 and Model 3 in Table 5.
17We choose not to include V3 in our statistical analysis to keep a feasible

number of pairwise comparisons in our analysis.

In order to obtain statistical evidence regarding the overall
difference between all treatments (Table 6), we apply a Fried-
man test on our data. The result allows us to reject our two
null hypotheses, that the treatments have the same performance
regarding V1 and V2 (each with p-value < 2.2E − 16). In addi-
tion, we then used pairwise Mann-Whitney test with all pairs of
treatments to see: (i) the statistical difference between each pair
of techniques, and (ii) the effect size of that difference, aiming
to see whether a specific technique differs significantly from the
others.

Therefore, we perform posthoc analysis to obtain effect sizes.
We use the Vargha-Delaney’s Â12 to understand how likely the
comparison favours one treatment than the other [22]. So, if
we observe the effect size (Â12) of the first comparison in Ta-
ble 6, we conclude the effect size in the comparison is 0.926
in favour of SART (CI [0.893, 0.950]) , which is a large effect
size. Moreover, the p-value yields statistically significant dif-
ference (SSD) for a 95% confidence level. We obtain similar
conclusions when we observe SART in the remaining compar-
isons (Rows 1 – 6 of Table 6), hence reinforcing the evidence of
SART’s capability to cover modifications compared to existing
similarity-based techniques in literature. In addition, note that
the techniques LVS, JAC, GOW and SOK are not significantly
different regarding their transition and modification coverage
(respectively, V1 and V2).

Based on our visual analysis of Figure 6a, one may assume
that the techniques have similar transition coverage capability.
However, the posthoc analysis provides us more details regard-
ing V1. Similar to our conclusions regarding V2, no significant
difference is seen when comparing LVS, JAC, GOW and SOK.
However, we observe a bigger difference between comparisons
involving CF. Since the synthetic models were small, the tech-
nique had to resolve many tie breaks through random choice.
In fact, that reflects on its comparison to RDM by reducing its
size effect to Medium.

The goal of this subsection is to provide detailed informa-
tion regarding our visual findings under statistical evidence and
tests. Therefore, our conclusions for the experiment comply
with generality when considering the limitations from construc-
tion validity threats discussed at the end of this section. Ul-
timately, we mitigate conclusion validity threats by carefully
checking our data and avoid relying on assumptions that could
lead us to a different conclusion regarding consistence of our
collected data (e.g. usage of parametric tests or ANOVA). Cer-
tainly the statistical significance achieved in our analysis is
complemented in the next subsection by our discussion regard-
ing practical significance of our findings.

5.4. Interpretations of results
In summary, both evaluations provide answers to our re-

search questions. Regarding RQ1, the case study shows that
SART’s selected subset still reveals defects even with a smaller
test suite. However, note that, in practice, reduction is not sig-
nificant since our industrial test suites do not have numerous test
cases. In turn, the experiment provide answers to RQ2 such that
SART has similar transition coverage than the other STCS tech-
niques, but it excels in selecting modification-traversing test

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 6: Summary of the posthoc statistical analysis for all possible comparisons between treatments. Each analysis determines whether the treatments have a
statistically significant difference (*SSD) according to their corresponding p-values and effect sizes (S - small; M - medium; L - large).

Transition coverage - V1 Modification coverage - V2

Pairwise
Comparison

p-value Â12
Effect Size

(CI)
Best

Effect
Size

SSD* p-value Â12
Effect Size

(CI)
Best

Effect
Size

SSD*

1 SART x CF 1.60E-06 0.658 [0.594, 0.718] SART M Yes 2.20E-16 0.926 [0.893, 0.950] SART L Yes
2 SART x RDM 0.02358 0.575 [0.510, 0.638] SART S Yes 2.20E-16 0.964 [0.938, 0.979] SART L Yes
3 SART x LVS 0.00946 0.414 [0.351, 0.479] LVS S Yes 2.20E-16 0.909 [0.873, 0.936] SART L Yes
4 SART x JAC 0.004457 0.405 [0.343, 0.471] JAC S Yes 2.20E-16 0.892 [0.852, 0.921] SART L Yes
5 SART x GOW 0.003329 0.402 [0.340, 0.468] GOW S Yes 2.20E-16 0.896 [0.858, 0.925] SART L Yes
6 SART x SOK 0.003085 0.402 [0.339, 0.467] SOK S Yes 2.20E-16 0.895 [0.857, 0.925] SART L Yes
7 CF x RDM 0.002445 0.399 [0.337, 0.465] RDM M Yes 7.59E-04 0.586 [0.522, 0.648] CF S Yes
8 CF x LVS 4.83E-11 0.285 [0.230, 0.347] LVS L Yes 0.1046 0.447 [0.386, 0.511] LVS S No
9 CF x JAC 2.00E-11 0.281 [0.227, 0.343] JAC L Yes 0.01206 0.419 [0.358, 0.482] JAC S Yes
10 CF x GOW 1.41E-11 0.279 [0.225, 0.341] GOW L Yes 0.00603 0.412 [0.351, 0.475] GOW S Yes
11 CF x SOK 9.28E-12 0.278 [0.223, 0.339] SOK L Yes 0.0272 0.429 [0.367, 0.492] SOK S Yes
12 RDM x LVS 6.05E-06 0.35 [0.291, 0.415] LVS M Yes 5.02E-07 0.354 [0.296, 0.416] LVS M Yes
13 RDM x JAC 2.15E-06 0.343 [0.284, 0.408] JAC M Yes 1.70E-09 0.32 [0.265, 0.381] JAC L Yes
14 RDM x GOW 1.30E-06 0.34 [0.281, 0.404] GOW M Yes 4.35E-10 0.313 [0.258, 0.374] GOW L Yes
15 RDM x SOK 1.08E-06 0.339 [0.280, 0.403] SOK M Yes 1.62E-08 0.333 [0.276, 0.394] SOK M Yes
16 LVS x JAC 0.8442 0.493 [0.428, 0.559] JAC S No 0.3301 0.469 [0.406, 0.532] JAC S No
17 LVS x GOW 0.7208 0.488 [0.423, 0.553] GOW S No 0.2362 0.462 [0.400, 0.525] GOW S No
18 LVS x SOK 0.7839 0.491 [0.426, 0.556] SOK S No 0.5173 0.479 [0.417, 0.542] SOK S No
19 JAC x GOW 0.874 0.495 [0.430, 0.560] GOW S No 0.8113 0.492 [0.430, 0.555] GOW S No
20 JAC x SOK 0.9467 0.498 [0.433, 0.563] SOK S No 0.7501 0.51 [0.447, 0.573] JAC S No
21 GOW x SOK 0.9345 0.503 [0.438, 0.568] GOW S No 0.5873 0.517 [0.455, 0.580] GOW S No

cases. Moreover, we achieve statistical significance of our ev-
idence through a rigorous statistical analysis of data. Nonethe-
less, our experiment is subject to threats to validity, further dis-
cussed in our next subsection. But first, we provide interpre-
tation of our results by exposing SART’s pros and cons found
during our evaluation.

SART’s similarity analysis focused on test cases from differ-
ent versions provides a leverage when compared to other tech-
niques simply concerned with selecting a diversity of model el-
ements. Our detailed statistical analysis show robustness and
consistence in our usage of similarity-based test case selec-
tion to identify modification-traversing test suite. However, if
the specification was not modified, SART is not recommended
since our similarity function relies on the assumption that both
test suites, provided as input, belong to two different versions
of a modified specification.

Our results show SART’s advantages already with small
models with few modifications. Bigger models that present
complex interactions and numerous model elements to be mod-
ified may present even better results since the remaining tech-
niques do not aim to identify modifications by analysing differ-
ent model versions. However, an experiment with more com-
plex and bigger models requires careful planning and an exper-
imental design (e.g. full factorial) more complex to execute and
analyse.

Although our evaluation focused on a single type of model
(ALTS), SART can be used with different types of model. Our
similarity function analyses test cases as sequences of labels,
transitions and states; all of them are abstract elements that can
be found in many types of models. Even though those elements
may be used/named differently in some types of models (e.g.

sequence diagrams, activity diagrams, finite state machines),
those elements can be interpreted as vectors (test case) and used
in our similarity analysis. In addition, some existing techniques
are able to create suitable ALTS for SART from other types
models, such as sequence diagrams [23].

Nonetheless, our results yield more research questions. For
instance, is there a specific type of modification (addition or re-
movals) that is more sensitive to SART’s selection strategy? Is
there a threshold regarding the subset size (or number of modifi-
cations covered) where SART starts to loose performance when
compared to other techniques? For instance, Cartaxo et al. ob-
served that CF is only beneficial for reductions up to 80% of the
original test suite size [8]. Now that we have evidence regarding
SART’s safety, we can compare it with other safe techniques to
measure the dependences and costs in applying different tech-
niques that select modification-traversing test cases.

5.5. Threats to validity

Even though we achieve statistically significant difference in
our experiment analysis, our evaluation methodology has many
threats to validity. Most of them are related to our constructs
given the limited availability (quantity and variety) of indus-
trial artefacts. Eventually we intend to do another experiment
as more specification models become available. In addition,
we intend to reproduce the experiment described in this paper
by increasing the number of synthetic specifications18, and per-
form a full-factorial experiment investigating how does the type
of model affects SART’s performance.

18Using a larger sample of more varied industrial models.

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.5.1. Construction validity threats

Our main construction validity threat is the lack of defect
detection analysis on our experiment. That hinders our conclu-
sions regarding coverage, since a dependent variable analysing
detected defects with our synthetic models could complement
our coverage analysis by plotting how both coverages relate to,
for example, regression defects. Unfortunately, any assumption
regarding defects on synthetic models, by itself, creates conclu-
sion and construction validity threats. As a countermeasure we
enhance our coverage analysis through statistically significant
evidence towards the benefits of using SART to test modified
specifications.

Furthermore, the classification used by SART divides test
cases in three different categories. That is a construct different
from the classification presented by Leung and White [5] that
divides regression test cases into five different categories. Even
though we may not have an accurate construct to those five clas-
sifications, our countermeasure is that the new-specification and
retestable classification are all covered in the targeted classifi-
cation used by SART. A similar problem is reported in [15] and
[7] where they also adapt Leung and White’s classification to a
finer grained classification to handle peculiarities of high level
artefacts.

For now, we did not compare SART with other regression test
case selection techniques because many techniques use differ-
ent types of models and rely on different assumptions regarding
modifications on those models. Thus, comparing those tech-
niques with SART, at this stage, would add severe construct
validity threats since controlling all those assumptions in an ex-
periment can encumber analysis. Our countermeasure was to
first do a sanity check with the case study and then gather strong
evidence that SART behaves as well as known STCS and also
targets full modification coverage (as we observe in our analy-
sis).

5.5.2. External validity threats

Most of our external validity threats are related to the case
study. The main limitation of our evaluation is that we do not
have access to a large sample of industrial specification models
and defect data, hence hindering generalization of our results.
As a countermeasure we avoid stating general results regarding
the case study, and limit our main and general contributions
(such as SART’s safety) to the experiment since we provide
statistical and practical significance of results.

Also, the specifications are not large and complex, hence the
set of diverse test cases becomes smaller, whereas larger models
would show more redundancy hence being more suitable to use
STCS. As a countermeasure we guide our case study analysis
based on the test suite’s dimensions (size, number of defects,
etc.) and the techniques efficiency, avoiding to favour any of
them regarding safety and precision.

In our next experiment we intend to focus on test suites ex-
ported by tools such as TestLink that allows testers to create test
plans for different versions of the SUT. Therefore, we are able
to investigate different scenarios and investigate SART’s inde-
pendence from models and aim to more general conclusions

regarding SART’s safety and robustness in covering modifica-
tions.

5.5.3. Conclusion validity threats
As countermeasures to avoid conclusion validity threats, we

use non-parametric statistics with consistent constructs (e.g.
STCS techniques) as suggested in [20]. In addition, we care-
fully determine our sample size through a prior power analysis
to achieve statistically significance in our results, and run nor-
mality tests to check whether a parametric analysis is suitable.

5.5.4. Internal validity threats
The main internal validity threats are related to the opera-

tion of the experiment, such as implementation of the tech-
niques and the experimental environment. As countermeasures
we thoroughly test the techniques and similarity functions prior
to execution. Note that the results are consistent to the obser-
vations in [9] that also experiments with different STCS tech-
niques.

6. Related Work

Test case selection for regression testing is a widely re-
searched topic in literature, resulting in several proposed tech-
niques, most of them targeting artifacts from source code
level [1]. Regarding specification-based approaches, there are
several ways to select test cases, each with its own benefits and
drawbacks.

A popular criterion for selection is modification, and identi-
fying modifications by comparing different versions is one of
the main strategies for selective regression testing. This com-
parison, however, can be costly depending on a software’s com-
plexity and size. One of the first techniques with that strategy
was proposed by Laski and Szermer [24]. The goal was to com-
pare control flow graphs obtained from different versions of a
source code and then identify subgraphs comprising the modi-
fied transitions and states, that in turn are mapped to code state-
ments.

Several more recent techniques select regression test cases
by identifying model modifications [15, 25, 7]; however, not all
modifications are handled by those techniques. For example,
some are unable to identify removed elements or more com-
plex modifications (e.g. to replace an architectural component,
or change a complex component of the software).

Some regression defects may be found on unmodified parts
of software, triggered as a side effect of a modification, such as
software parts dependent on a modified element, leading then to
more sophisticated selection strategies where dependency anal-
ysis is required to complement the model comparison. In fact,
dependence analysis for model-based regression testing is an
extensively studied topic [3, 7]. Several approaches have been
proposed for UML models such as, sequence diagrams, state
machines, use cases and class diagrams [1, 14, 15, 25, 7]. They
all address models differently by analysing information of the
same SUT but from different models (e.g. class and sequence
diagrams connected to a use case [15]).

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In dependency analysis of specification models [1, 14], all
of the model elements are investigated to identify their corre-
spondent dependencies. Discussed initially by Korel et al. [1]
for the model-based context, there are three aspects in which
modifications can cause defects: the model can affect the mod-
ification, the modified part can be affected by the model, and
a side effect can be introduced by the modification. Compari-
son alone may not be sufficient to ensure safe regression testing
in model-based testing, because some of the defects may be
hidden under the affected, affecting or side-effect types. Then
selection is done by choosing test cases traversing any of those
marked dependencies.

On the other hand, those techniques tend to be costly in prac-
tice, or limited by constraints (e.g. a system’s size). Among
the selection strategies described above, SART identifies modi-
fications and analyse similarities between test cases to increase
coverage of modification-traversing test cases. But unlike other
techniques that rely on model comparison or dependence anal-
ysis, SART applies similarity-based test case selection (STCS)
to identify modifications based on information from test cases.
Our technique does not require model files as input. However,
we assume that the test cases contain behavioural information
of the SUT, such as basic and alternative flows, instead of just
test data.

7. Concluding remarks

This paper presented the similarity approach for regression
resting (SART) that combines a similarity-based test case se-
lection technique with model-based testing approaches to select
test cases exercising modified parts of a specification model.
SART is implemented in the LTS-BT tool [19] and the arte-
facts of our evaluation are available online19 (except for our
case study, due to an NDA).

Instead of analysing similarities among test cases belonging
to the same test suite, we analyse similarities between test cases
of different versions of a software system, to enable selection
of modification-traversing test cases. We rely on the assump-
tion that very different pairs of test cases indicate modified se-
quences of transitions. Based on the similarity values from a
matrix, we are able to automatically classify the test cases and
then select the ones traversing modified regions of the model.

In our case study, SART detected the same defects as a set
of known STCS techniques and our participant’s manually se-
lected subset. Consequently, SART is a feasible and quick al-
ternative for automatic test case selection. Moreover, manual
selection of abstract test cases can be daunting and time con-
suming especially for inexperienced tester, thus automatic se-
lection would allow testers to dedicate more time to analyse
test results and find defects.

Even though the other investigated STCS techniques also
have those advantages, our experiment provides evidence that
SART is a better choice for specification-based regression test-
ing. Overall, no significant difference was found regarding

19https://sites.google.com/site/fgonetosite/home/downloads

transition coverage capability when comparing all techniques,
but SART presented the best (and more consistent) modifica-
tion coverage (100% of modifications were covered by test
cases, opposed to the average 60% of the remaining investi-
gated techniques). Besides, SART constantly exercises the cov-
ered modifications by selecting different scenarios (or flows) in
which they appear, whereas the other techniques select mostly
reusable test cases. On the other hand, if no modification is per-
form on the specification, SART can be avoided since the test
requirements would be different.

That being said, there are still several aspects regarding
SART’s applicability that require further empirical investiga-
tion. For example, we believe that SART is independent of
a specific model type used in an MBT process. By adapting
our similarity function to count UML meta-elements (e.g. ac-
tivities, objects and messages) instead of transitions or text in-
formation, the technique can be easily modified to analyse test
cases generated from UML models. Furthermore, we intend to
extend our evaluation to a larger factorial experiment consid-
ering more factors, such as different types of models, modifi-
cations and regression test case selection techniques. In addi-
tion, we intend to compare SART with different specification-
based techniques. The goal then is to complement our findings
regarding SART’s unique features as a STCS able to identify
modification-traversing test cases.

8. Acknowledgments

This research project is part of a collaboration between the
Federal University of Campina Grande (Brazil) and Chalmers
and the University of Gothenburg (Sweden) under the Science
Without Borders (SWB) [grant number 88881.030428/2013-01,
project number 152146]. Also, this work was partially sup-
ported by the National Institute of Science and Technology
for Software Engineering, funded by CNPq/Brasil [grant num-
ber 573964/2008-4]; and by the Knowledge Foundation (KKS)
through the project 20130085: Testing of Critical System Char-
acteristics (TOCSYC).

References

[1] B. Korel, L. H. Tahat, B. Vaysburg, Model based regression test reduc-
tion using dependence analysis, in: Proceedings of the International Con-
ference on Software Maintenance (ICSM ’02), IEEE Computer Society,
Washington, DC, USA, 2002, pp. 214–223.

[2] M. J. Harrold, A. Orso, Retesting software during development and main-
tenance, in: Frontiers of Software Maintenance (FoSM 2008), Beijing,
China, 2008, pp. 99–108.

[3] S. Yoo, M. Harman, Regression testing minimization, selection and prior-
itization: A survey, Software Testing, Verification and Reliability 22 (2)
(2012) 67–120.

[4] G. Fraser, F. Wotawa, Redundancy based test-suite reduction, in:
M. Dwyer, A. Lopes (Eds.), Fundamental Approaches to Software Engi-
neering, Vol. 4422 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2007, pp. 291–305.

[5] H. K. N. Leung, L. White, Insights into regression testing, in: Software
Maintenance, 1989., Proceedings., Conference on, 1989, pp. 60–69.

[6] G. Rothermel, M. J. Harrold, Analyzing regression test selection tech-
niques, IEEE Transactions on Software Engineering 22 (1996) 529–551.

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[7] E. Fourneret, J. Cantenot, F. Bouquet, B. Legeard, J. Botella, Setgam:
Generalized technique for regression testing based on uml/ocl models,
in: Software Security and Reliability (SERE), 2014 Eighth International
Conference on, 2014, pp. 147–156. doi:10.1109/SERE.2014.28.

[8] E. G. Cartaxo, P. D. L. Machado, F. G. de Oliveira Neto, On the use of
a similarity function for test case selection in the context of model-based
testing, Software Testing, Verification and Reliability 21 (2) (2011) 75–
100.

[9] H. Hemmati, A. Arcuri, L. Briand, Achieving scalable model-based test-
ing through test case diversity, ACM Trans. Softw. Eng. Methodol. 22 (1)
(2013) 6:1–6:42.

[10] M. Fahad, A. Nadeem, A survey of UML based regression testing, in:
Z. Shi, E. Mercier-Laurent, D. Leake (Eds.), Intelligent Information Pro-
cessing IV, Vol. 288 of IFIP Advances in Information and Communication
Technology, Springer Boston, 2008, pp. 200–210.

[11] F. G. de Oliveira Neto, R. Feldt, R. Torkar, P. D. L. Machado, Search-
ing for models to evaluate software technology, in: Proceedings of the
1st International Workshop on Combining Modelling and Search-Based
Software Engineering, 2013, pp. 12–15.

[12] G. Cabral, A. Sampaio, Formal specification generation from requirement
documents, Electron. Notes Theor. Comput. Sci. 195 (2008) 171–188.

[13] C. Jard, T. Jéron, TGV: theory, principles and algorithms: A tool for the
automatic synthesis of conformance test cases for non-deterministic reac-
tive systems, International Journal Software Tools for Technology Trans-
fer 7 (4) (2005) 297–315.

[14] Y. Chen, R. L. Probert, H. Ural, Regression test suite reduction using ex-
tended dependence analysis, in: SOQUA ’07: Fourth international work-
shop on Software quality assurance, ACM, New York, NY, USA, 2007,
pp. 62–69.

[15] L. C. Briand, Y. Labiche, S. He, Automating regression test selection
based on UML designs, Information and Software Technology 51 (1)
(2009) 16–30, special Section - Most Cited Articles in 2002 and Regu-
lar Research Papers.

[16] M. J. Harrold, R. Gupta, M. L. Soffa, A methodology for controlling the
size of a test suite, ACM Transactions Softwware Engineering Methodol-
ogy 2 (3) (1993) 270–285.

[17] A. Bertolino, E. G. Cartaxo, P. D. L. Machado, E. Marchetti, J. a. F. S.
Ouriques, Test suite reduction in good order: Comparing heuristics from
a new viewpoint, in: The 22nd IFIP International Conference on Testing
Software and Systems (ICTSS’10), 2010, pp. 13–18.

[18] P. Borba, A. Cavalcanti, A. Sampaio, J. Woodcock (Eds.), Testing Tech-
niques in Software Engineering, Springer-Verlag, Berlin, Heidelberg,
2010.

[19] E. G. Cartaxo, W. L. Andrade, F. G. de Oliveira Neto, P. D. L. Machado,
LTS-BT: A tool to generate and select functional test cases for embed-
ded systems, in: Proceedings of the 2008 ACM Symposium on Applied
Computing, SAC ’08, ACM, New York, NY, USA, 2008, pp. 1540–1544.

[20] A. Arcuri, L. Briand, A hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering, Software Testing, Verifi-
cation and Reliability 24 (3) (2014) 219–250.

[21] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation and Modeling, John
Wiley, 1991.

[22] A. Vargha, H. D. Delaney, A critique and improvement of the CL
common language effect size statistics of McGraw and Wong, Jour-
nal of Educational and Behavioral Statistics 25 (2) (2000) 101–132.
doi:10.3102/10769986025002101.

[23] E. G. Cartaxo, F. G. de Oliveira Neto, P. D. L. Machado, Test case genera-
tion by means of UML sequence diagrams and labeled transition systems,
in: Proceedings of IEEE International Conference on Systems, Man and
Cybernetics, 2007 (SMC’07), 2007, pp. 1292–1297.

[24] J. Laski, W. Szermer, Identification of program modifications and its ap-
plications in software maintenance, in: ICSM ’92: Proceedings of the
Conference on Software Maintenance, IEEE Computer Society, 1992, pp.
282–290.

[25] Q.-u.-a. Farooq, M. Z. Z. Iqbal, Z. I. Malik, M. Riebisch, A model-based
regression testing approach for evolving software systems with flexible
tool support, in: Proceedings of the 2010 17th IEEE International Con-
ference and Workshops on the Engineering of Computer-Based Systems,
ECBS ’10, IEEE Computer Society, Washington, DC, USA, 2010, pp.
41–49.

16

