
An Exploratory Study of Component Reliability

Using Unit Testing

R. Torkar, S. Mankefors, K. Hansson and A. Jonsson

Dept. of Informatics and Mathematics

University of Trollhättan/Uddevalla

P.O. Box 957, SE-461 29 Trollhättan, Sweden

{richard.torkar, stefan.mankefors}@htu.se

Abstract

Using basic unit testing techniques we found 25 faults

in a core component within a larger component oriented

framework after the component had already started to be
reused. We found that, even though this particular

component had been subject to subsystem and system

testing and used for some time, several faults were
discovered which seriously would have affected

applications using it, especially in terms of reliability.
This study clearly indicates the need of a new approach to

testing and verification within component-based

development and reuse.

1. Introduction

The use of Commercial-Off-The-Shelf (COTS)

software components has increased over the years. The

continued success of COTS components, however, is

highly dependent on the reliability of the software at

hand. In a survey recently made [3], one of the key

findings was that developers reuse components, but they

seldom test software before incorporating it in the

implementations, especially unit testing is seldom used.

At the same time the majority of the developers did not

test the components during original development [3],

hence leading to a paradox of un-tested software being

used again and again.

We do not believe that components and code in

general are tested well enough. This makes, in some

respect, component-based development (CBD) a potential

nightmare. According to Parnas [1], every software

product should be evaluated before being used at any later

stage in the development process, something that is only

partly done. If we are to really succeed in component-

based software engineering and reuse in general, we must

make sure that developers test [5] their code even more

than they do currently. This to ensure that any faults in

the product are detected as early as possible, and more

important, is not “inherited” with the use of COTS

components; Boehm [2] pointed out already 20 years ago

that the longer a fault stays in a software system the more

expensive it is to remove.

In this paper we report on an explorative case study on

a component already in use in the software community,

applying unit testing to it as a third party developer would

(should) have, before incorporating it. By doing this, we

want to, in a practical case, investigate the reliability of an

actual component already in use. In order to try to choose

a component that is relatively representative of “high

reliability components” in terms of expected frequent

reuse we tested a core class component (System.Convert)

in the Mono:: framework [8]. Since the framework will be

a foundation for potentially tens of thousands of

applications using it in the open source world, any

undetected fault will have very severe repercussions. The

component at hand was furthermore already to some

extent subsystem and system tested, deemed reliable and

reused. No unit tests had to our knowledge been applied,

however.

Different persons from the ones actually implementing

the class or method, closely mimicking the situation of a

developing team testing a COTS component before re-

using, wrote all tests. Using a straightforward unit test

approach we tested all available methods in the class,

finding a total of 25 faults.

We find that even applying a straightforward basic

suite of tests to a component before re-using it is of

interest to the developers, as well as extra test cases

performed after the formal development of the software.

The remaining parts of this paper are devoted to the

technical background, results, analysis and the broader

scope and impact of our findings.

2. Background

Software verification and validation (V & V) intends

to answer two basic questions. Are we building the

product right and are we building the right product? In

our case: is the product being built, conforming to the

European Computer Manufacturers Association

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:00 from IEEE Xplore. Restrictions apply.

specifications 334 [6] and 335 [7] ECMA-334? The

former being the C# Language Specification and ECMA-

335 being the Common Language Specification, as

submitted to the ECMA standardization body by

Microsoft, Intel, Hewlett-Packard and Fujitsu Software in

December 2001.

These two standards are likely to have a great impact

on COTS, CBD and reuse in general the next couple of

years. Thus a need to make sure that the foundation

whereas several thousands or even tens of thousands of

application will be built upon is stable. ECMA-334 is

further considered to be a standard, which has clear

component-based aspects in it and combined with

ECMA-335 in conjunction with the framework library

gives the future developer a platform with which (s)he

can reuse large parts. The framework is in other words a

large collection of components that can and will be

reused. Hence the reliability of these fundamental

components must be extremely high.

The components that tested in this study came from the

Mono:: project [8]. Mono:: is an open source version of

.NET [18], which is hosted by Ximian Incorporation. The

goal for Mono:: is to provide several pieces of

components for building new software, most notably a

virtual machine, class library and compiler for the C#

language.

2.1. Unit testing

Unit testing is a well-known technique [9] and has

increasingly been used in the last couple of years,

especially since the arrival and success of object-oriented

languages, such as Java, C++ and more recently C#.

Lately also development processes such as XP has made

unit testing a closely integrated part of the development.

Furthermore a recent study [3] shows that unit testing is

one of the most common test technique used by software

developers today.

In unit testing [10] the smallest piece of code (unit) is

checked to ensure that it conforms to its requirements.

These tests are written once and used many times, during

the development cycle, to ensure that code regression is

kept at a minimum. Usually the tests are written in the

same programming language, which is used to build the

software itself. Unit testing should not be used to test

relationships or coupling in an object-oriented framework.

If that is what one would like to test, then sub-system

testing techniques do exist [11].

3. Methodology

Taking the starting point in the difficulty of a

developer reusing a software component from a third

party, we apply a straightforward unit testing scenario.

We also assume the software development taking place

within the Mono:: framework, the open source

implementation of .NET, supposedly being one of the

most component and reuse oriented platforms today.

As mentioned in the introduction we needed a fairly

large class to use in our study. We evaluated several and

finally chose the Convert [12] class in the System

namespace. The main reason for choosing this class was

its significance and its large number of methods, which

would be in need of testing before incorporation of the

component into an application. The class provides all

standard methods for converting a base data type to

another base data type in the framework. This is a typical

task delegated to a framework or library in most

applications, handling e.g. conversions between

hexadecimal and decimal numbers or integers to strings.

Hence possible failure in this class would affect base

functionality in a vast number of applications employing

the Mono:: framework. The namespace System also

indicates that this class is a core part of the framework.

Assuming the typical limited resources [3] allocated

for testing in software developing projects we chose to

only implement a basic suite of test cases. We did not

strive, in any way, towards completeness in test coverage,

the reason being that we set out to show that even a very

basic suite of tests still could find faults in a widely used

part of a framework. The basic test cases we are referring

to in this case consisted of testing the boundary conditions

and off-nominal cases in which this component should

degrade gracefully, without loss of data. Finally some

random input was also carried out on each method being

tested.

Since the tests in our case derived (as for a general

software developer) from the knowledge of the

specification and structure of the class(es), a pure

structural approach known as white-box testing [13], was

used. The tests written had only one objective in mind and

that was to find flaws in the implementation according to

the specification.

Several tools are available to a developer when

performing unit tests of the type mentioned above. Most

notable is JUnit [14], which is described by Gamma and

Beck as being a regression testing framework and is Open

Source [15]. Since JUnit is open source, other developers

can port it to different languages. NUnit [16], by Philip

Craig, is such a port.

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:00 from IEEE Xplore. Restrictions apply.

Several programming languages are supported by

NUnit, but in our case the C# programming language was

the most important. The NUnit framework consists of

several classes. These classes contain methods, which the

developer uses when constructing test cases.

To compare resulting values, which is very often the

case, different Assert [17] methods were used in this

study. Especially the AssertEquals method was used

extensively, since if used correctly it generated a message

that makes it easier for the developer to establish exactly

which test case failed.

AssertEquals("ID", expectedObject, receivedObject);

In the above case, when the expected object is not the

same as the received object, an exception is thrown. The

exception includes the value of the expected/received

objects and the test ID, so that the developer can easily

see where and why it failed.

An example of an error message can be seen below:

AssertEquals("#A00",(int)2,(short)2);
TestChangeType(MonoTests.System.ConvertTest) :

 #A00 expected:<2> but was:<2>

The reason the above test failed was that even though

the value was equal, the type was not. Notice how the

method ChangeType is being tested by the method

TestChangeType. A Test prefix is added to a test method

so that it will automatically be included into the testing

framework when being run the next time.

It is not uncommon to write several tests that

manipulate the same or similar objects. To be able to do

this in a controlled environment a common base must be

established. This base, also known as the fixture, makes

sure that the tests are run against a known and well-

established foundation. The next step is to create a

subclass of TestCase (see below), add an instance variable

for each part of the fixture, override SetUp() to initialize

the variables and finally use TearDown() to release the

resources you allocated in SetUp().

public class ConvertTest : TestCase {
 bool boolTrue;
 bool boolFalse;
 [...]
 protected override void SetUp() {
 boolTrue = true;
 boolFalse = false;
 [...]} [...]}

Once the above fixture is in place the developer can

write many tests manipulating the same units. If the

developer wants to run several tests at the same time the

NUnit framework provides the developer with the object

TestSuite which can execute any numbers of test cases

together.

3.1. Unit testing of System.Convert

As already mentioned previously we selected the class

Convert in the System namespace, for a number of

reasons. The System.Convert class consisted of one

public field and 22 public methods, all in all 2463 lines of

code (LOC). Furthermore, each overridden method

should be tested to ensure progressive reliability.

The routine for constructing the test method was easily

established. First, the specification was read carefully;

secondly, boundary, “off-by-one” and at least one legal

input value test was written for each method belonging to

System.Convert, and finally the tests were run. This

process was repeated several times until all methods had

tests written for them that covered all contingencies. To

ensure the test’s integrity we implemented and executed

them under the .NET framework [18] before applying the

test cases within the Mono:: framework.

A unit test made for FromBase64CharArray, a method

which converts the specified subset of an array of

Unicode characters consisting of base 64 digits to an

equivalent array of 8-bit unsigned integers, will illustrate

the principles of the general methodology. The method

takes three arguments, the inArray, the offset (a position

within the array) and the length (num of elements that

should be converted). The array inArray is only allowed

to consist of the letters ‘A’ to ‘Z’, ‘a’ to ‘z’, numbers ‘0’

to ‘9’ and ‘+’,’/’. The equal sign ‘=’ is used to fill empty

space. To make sure that the conversion was correctly

made the result and the expected result, both arrays, must

be looped through and compared. This can easily be done

through e.g.:

for(int i=0; i<result.length; i++)
 AssertEquals("#U0" + i,expectedByteArr[i],result[i]);

The next two examples are test methods for

ToBoolean. ToBoolean is overridden 18 times in

System.Convert, one for each built-in type, twice for

Object, twice for String and once for DateTime. Since the

different examples are quite similar only Int16 and Char

will be covered. Below Int16 is tested; if it is anything but

zero it will be converted to true.

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:00 from IEEE Xplore. Restrictions apply.

AssertEquals("#D05, true,
Convert.ToBoolean(tryInt16));

Next the Char example, shows that testing exceptions

is just as easy. Since a conversion from char to bool is not

allowed an exception should be thrown i.e.

InvalidCastException.

try {
Convert.ToBoolean(tryChar);
} catch (Exception e) {

 AssertEquals("#D20",
 typeof(InvalidCastException),
 e.getType()); }

The test cases written are thus fairly straightforward

and test every method’s input and output, the

specification deciding the legality of the outcome of each

test.

4. Results

By using the described unit testing approach all in all

25 flaws were discovered. The test case consisted of 2734

LOC while the tested class holds 2463 LOC. This is more

or less a 1:1 ratio between class LOC and test LOC,

which is considered as being the default in XP [19].

This result in itself clearly indicates the severe problem

of reliability in reusable components. That the findings

occur in a core class in a framework makes this point

even more severe. Virtually any type of fault in such a

class could be expected to lead to failures occurring in a

wide range of applications. Hence all the found faults

have a very high degree of severability. Because of the

nature of the class at hand, i.e. being a core component in

a globally used framework, the relative reliability is

extensively impaired by even a single or a few faults.

Turning to the technical details of the test cases, we

cover a few examples fully, before continuing with a

summary, in order to keep focus on the general

component reliability rather than the individual fault.

Some of the failures detected were clearly the result of

a misinterpretation as can be seen below.

short tryInt16 = 1234;
Convert.ToString(tryInt16, 8);

The above code snippet should, according to the

specification, convert the short value ‘1234’ to an octal

string, i.e. ‘2322’. What really happened was that the

value ‘1234’ got parsed as an octal value and converted to

‘668’. This could easily be proved by changing tryInt16

to ‘1239’, since the octal number system does not allow

the number 9. The result in Mono:: was now ‘673’,

clearly wrong since a FormatException should have been

thrown. We find it a bit strange that no developer had

reported run-time failures of this kind when using the

Convert class.

Yet another test case discovered a flaw in how hex

values were treated.

Convert.ToByte("3F3", 16);

This line should convert ‘3F3’, which is a hex value, to

the byte equivalence. Since, in this case, there really is no

byte equivalence, ‘3F3’ is 1011 in the decimal number

system and the byte type is only allowed to contain values

between 0 - 255, an OverFlowException should be

thrown. This was not the case in the current

implementation, instead the method returned the value

‘243’. So the converter started over from ‘0’, thus leading

to 1011 - 3 * 256 = 243.

As can be seen from these two simple cases, all the test

cases tested a minimum of two things, crossing over the

maximum and minimum values for a given method or

type, simply by using maxValue + 1 and minValue - 1.

This is something that should have been tested during the

implementation since it is considered to be one of the

standard practices [20].

The above two underlying faults, which were

uncovered in the implementation, would naturally lead to

strange behavior in an application using System.Convert.

Probably the only reason why this was not discovered

earlier was that the above methods were not exercised in a

similar way [as in this survey] by other developers.

As already mentioned, in total 25 faults were found in

the Convert class. These faults were mainly of two types

(Table 1, next page) that caused exception failures, e.g.

OverflowException or FormatException, and secondarily,

misinterpretation of the specification when the component

was created, as we already saw previously, i.e.

Convert.ToString(tryInt16,8).

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:00 from IEEE Xplore. Restrictions apply.

LOC class 2463

LOC test 2734

Misc. exception failures 15 (1)

Logic fault 4

Incorrect control flow 2

Signed/Unsigned fault 6

Data/range overflow/underflow 3

Misinterpretation 9

Unknown 1

Total num of faults 25

Table 1. Overview of results. Faults in italic
belong to the misc. exception category.

One unknown failure was found where we could not

pinpoint the exact reason. The Convert.ToString method

below should have returned the expected result, but

instead it returned ‘-1097262572’.

long tryInt64=123456789012;
AssertEquals(“#O40”, “123456789012”,

Convert.ToString(tryInt64,10));

Clearly this is a case of overflow, but no exception was

raised, which should have been the case.

What then, could the uncovered faults lead to? In the

case of reliability ISO-9126 [21] mentions maturity, fault

tolerance and recoverability. Clearly several of the flaws

we found showed relatively immature aspects, e.g. faults

that should have been uncovered if the framework had

been used more extensively by developers. These faults

probably would have been uncovered over time when the

framework had been used more. But as we have already

mentioned, Boehm [2] has pointed out the need for

uncovering faults early in the development process for

several reasons.

Fault tolerance in a framework, such as this, should be

able to identify a failure, isolate that failure and provide a

means of recovery. This was not the case with several of

the exception failures we uncovered. Identification and

isolation of a failure could in several of these cases be

implemented by examining the input for validity, isolate

non-valid input and notify the developer of the fault.

Finally, when an exception is thrown because of a fault

in a core component, a developer would have problems

recovering, since a stable foundation is expected. On the

other hand, an overflow occurring without an exception

being thrown would cause a very strange behavior in the

application using the method as well as a severe problem

to debug. If it is possible to differ between severability of

faults in a core class in a framework such as Mono:: - all

faults being of a very serious nature - a fault that does not
cast an exception holds even a higher severability than the

other faults.

5. Conclusion

CBD is often promoted as one of the great trends

within software development. A fundamental problem,

however, is the degree of reliability of the individual

components, something clearly indicated by our current

study.

Mimicking the situation of a third party developer, we

chose to apply straightforward unit testing to a core

component from the Mono:: framework, being the open

source implementation of .NET. Employing “off-by-one”,

boundary testing and certain legal input for each method

we were able to uncover in total 25 faults in the

implementation of the class at hand. Although always

extremely serious when it comes to a core class like

System.Convert, some failures did not result in any

exception being thrown. A fact that must be – if possible

– considered even more severe.

This component had already been subject to certain

sub-system and system testing and makes up one of the

core parts in the framework. The fact that the component

already was in reuse, clearly shows the seriousness of the

reliability problem of CBD. Combined with the non-

systematic evaluation of components from third parties by

software developers [3] (i.e. lack of testing before usage

as opposed to what was done in this study) the reliability

not only of the components but a wide range of resulting

applications is jeopardized.

Based on our findings we propose that some sort of

low level testing of components should be a foundation

for further testing methodologies, more or less without

exception. Trusting the foundation, when adding module

and sub-system tests, is vital. It is, to put it bluntly, better

to add low level testing after implementation or even

usage of a piece of software, than not doing it at all. In the

specific case at hand a third party developer performing

the test cases in this study would have avoided failures

late in the development time-line and at the same time

aided the CBD community. Sooner of later one will

experience failures if testing is not performed properly.

The question is; can you afford trusting the origin of a

component? Since no de facto certification is widely used

today [3], we believe the answer is no to that question.

One important thing must be stressed throughout any

software project - if a developer finds a fault, they should

immediately write a test case for it. That way the fault

will show up again, if the present code deteriorates. This

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:00 from IEEE Xplore. Restrictions apply.

could be considered as a best practice and somehow

forced upon the developers during check-in of new or

changed source code. If this practice had been followed in

the project then some of the faults we found would

probably have been found much earlier.

6. Future work

Programmers, in general, want fully automated tests,

which find faults instantly. This is of particular interest in

a CBD context where reusing is en extensive part of

software development. Only automatization will allow for

easy checks of software before incorporation into new

software projects.

Even though there today exist some on-the-fly error

checking techniques, e.g. syntax checking and lexical

checking during compilation, there is still a need, to

extensively improve and expand the current methods.

Ideally, the tests should be created and performed

constantly in the background and give feedback to the

programmer immediately when manipulating code [19].

A different approach could involve test suites being

run automatically when a developer checks in a change to

the project on a configuration management system. By

doing this, the developers could be notified when their

submission deteriorates the existing and hopefully

working code base. This has, to some extent, already been

implemented, but a need for a more formalized approach

still exists [22].

By adapting and merging several specific testing

technologies it will hopefully be possible to show how to

make it an integrated, reliable part of software

engineering with automatization as the key benefit.

Once such tool could be the control of the consistency

of a common code base stored in a repository and warn

developers immediately when tests fail. The aim is that

only the relevant code changes should be tested. Such a

tool should also, in the future, be able to create simple test

cases if asked for by a developer as described already by

Luo et al. [23] in the context of constructing stubs for

testing.

In the longer perspective, statistics such as test

coverage and code regression (e.g. test failures) could be

retrieved or calculated, for the benefit of both the

developers and management.

7. Acknowledgements

Prof. Claes Wohlin for giving us input on how to best

present our work. European Union regional development

fund for funding part of this project, and Dr. Steven Kirk

for proofreading it.

8. References

[1] Parnas, D.L. and Clements, P.C., “A Rational Design

Process: How and Why to Fake it”, IEEE Transactions in

Software Engineering SE-12, Feb. 2 1986, pp 251-257.

[2] Boehm, B.W. Software Engineering Economics, Addison-

Wesley, 1983.

[3] Torkar, R. & Mankefors, S. “A survey on testing and reuse”,

SwSTE’03, November 2003.

[4] Karlström, D., “Introducing Extreme Programming - An

Experience Report”, SERP'01, October 2001.

[5] Rosenblum, D., "Adequate testing of componentbased

software", Department of Information and Computer Science,

University of California, CA, Technical Report 97-34, Aug

1997, http://citeseer.nj.nec.com/rosenblum97adequate.html,

2003-02-26.

[6] ECMA-334, “C# Language Specification”, ECMA, 2001.

[7] ECMA-335, “Common Language Infrastructure (CLI)”,

ECMA, 2001.

[8] Mono::, http://www.go-mono.org, 2002-07-31.

[9] Brooks, F.P., No Silver Bullet; Essence and Accidents of

Software Engineering. IEEEComputer April 1987, pp. 10-19.

[10] IEEE 1008-1987, “Standard for Software Unit Testing,

ANSI/IEEE”, IEEE, 1993.

[11] Wang, C-C. et al., “An Automatic Approach to Object-

Oriented Software Testing and Metrics for C++ Inheritance

Hierarchies”, International Conference on Information,

Communications and Signal Processing, 1997.

[12] The Class Library Specification,

http://msdn.microsoft.com/net/ecma/All.xml, Microsoft

Corporation, 2002-07-31.

[13] Kamsties, E. & Lott, C. M., “An empirical evaluation of

three defect-detection techniques", Proceedings of the 5h

European Software Engineering Conference, Springer-Verlag,

1995, pp 362-383.

[14] Beck, K. & Gamma, E., “Test Infected: Programmers love

writing tests”, Java Report, 1998, pp. 51-66.

[15] Raymond, E.S. & Young, B., The Cathedral and the

Bazaar: Musings on Linux and Open Source by an Accidental

Revolutionary, O'Reilly, 2001.

[16] NUnit, http://nunit.sourceforge.net, 2002-07-31.

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:00 from IEEE Xplore. Restrictions apply.

[17] MacKinnon, T., “Xunit – a plea for assertEquals”,

http://citeseer.nj.nec.com/525137.html, Posted January 01 2002,

2003-02-20.

[18] Thai L. et al., .NET Framework Essentials (2nd Edition),

O'Reilly, 2002

[19] van Deursen, A., “Program Comprehension Risks and

Opportunities in Extreme Programming”, Proceedings 8th

Working Conference on Reverse Engineering, IEEE Computer

Society, 2001, pp. 176-185.

[20] Myers, G. J., The Art of Software Testing, John Wiley &

Sons, New York, 1978.

[21] ISO (1991). International Standard ISO/IEC 9126.

Information technology -- Software product evaluation --

Quality characteristics and guidelines for their use,

International Organization for Standardization, International

Electrotechnical Commission, Geneva.

[22] Bache, G. and Bache, E., “One suite of automated tests:

examining the unit/functional divide”,

http://citeseer.nj.nec.com/526066.html, 2003-02-20.

[23] Luo, G. et al., “Approach to Constructing Software Unit

Testing Tools”, Software Engineering Journal 10, November

1995, pp. 245-252.

[24] Toepee, S. and Ranville, S., “Model Driven Automatic

Testing Technology : Tool Architecture Introduction and

Overview”, 18th AIAA/IEEE/SAE Digital Avionics System

Conference, October 1999.

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:00 from IEEE Xplore. Restrictions apply.

