
Incorporating Metrics in an Organizational Test Strategy

Wasif Afzal and Richard Torkar
Blekinge Institute of Technology,

S-372 25 Ronneby, Sweden
{waf, rto}@bth.se

Abstract

An organizational level test strategy needs to incorporate
metrics to make the testing activities visible and available
to process improvements. The majority of testing measure-
ments that are done are based on faults found in the test ex-
ecution phase. In contrast, this paper investigates metrics
to support software test planning and test design processes.
We have assembled metrics in these two process types to
support management in carrying out evidence-based test
process improvements and to incorporate suitable metrics
as part of an organization level test strategy. The study is
composed of two steps. The first step creates a relevant con-
text by analyzing key phases in the software testing lifecycle,
while the second step identifies the attributes of software
test planning and test design processes along with metric(s)
support for each of the identified attributes.

1. Introduction

There is a need for cost effective and efficient software

testing processes that are able to meet todays demands of

delivering low cost and quality software. Low cost and high

quality software is a perfect couple but achieving it is indeed

a challenge due to constraints of schedules, time to market

and work force limitations. Often is the case that software

is released in a rush to stay in competition with market but

a compromise is made on adequate testing of the software,

making it more prone to failures.

The perplexity of the situation can be reduced by hav-

ing an effective software testing process in place, governed

by an organizational level testing strategy. Assessment of

the effectiveness of the software testing process has to rely

on appropriate measures. Measures that are embedded in

the organizational level testing strategy makes the under-

lying testing process activities visible, enabling the man-

agers and engineers to better acknowledge the connections

among various process activities. In addition measures pro-

vide evidences about process inadequacies; thereby facili-

tating improvements. As is shown by Burnstein et al. [10],

measurement helps in improving the software testing proce-

dures, methods, tools and activities by providing objective

evidence for evaluations and comparisons. In short, know-

ing and measuring what is being done is important for an

effective testing effort [40].

If we categorize software testing into phases of planning,

design, execution and review; then the current literature

presents enough metrics based on the test execution phase

and on the basis of number of faults found during this phase.

There is an apparent gap when we are interested in metrics

for test planning and test design processes. This is rather

surprising because test planning and test design processes

have a significant impact on actual test execution, therefore

the improvements in these two processes is bound to impact

the test execution phase. Moreover, the artifacts resulting

from planning and design phase (See Sections 4.1 and 4.2)

are critical to the success of the testing effort as a whole.

Therefore, we explore the possible metrics in software test

planning and test design processes at system testing level to

contribute towards defining an organizational level testing

strategy that incorporates metrics as a means to control the

testing process. Also, an organization needs to have a refer-

ence set of measurable attributes and corresponding metrics

that can be applied at various stages during the course of ex-

ecution of an organization wide testing strategy. Therefore,

we attempt to present the measurable attributes and the cor-

responding metrics of software test planning and test design

processes in a consolidated form.

The rest of this paper is divided into the following sec-

tions. Section 2 presents the research methodology. Section

3 introduces the reader to relevant definitions, while Section

4 provides an insight into the software testing life cycle used

as a baseline in this paper. Sections 5 and 6 cover the dif-

ferent attributes relevant to software test planning and test

design processes respectively, while Sections 7 and 8 cover

the metrics relevant for the respective attributes. Finally,

we conclude this paper in Section 9 and cover future work

in Section 10.

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:23 from IEEE Xplore.  Restrictions apply. 



2. Research method

Selection of appropriate information resources and an

unbiased search is fundamental in reviewing literature. The

intention of this study is to perform a survey of relevant

work into metric support for software test planning and

test design processes and to deduce important conclusions.

The search strategy used is limited to electronic databases,

namely IEEE Xplore and ACM Digital Library, using a

combination of multiple key terms to reduce the differ-

ences in terminology. In addition to electronic search, man-

ual search was performed on the proceedings of Interna-

tional Software Metrics Symposium. The studies that were

not related to software test planning and design phase at

the system testing level were excluded. Other electronic

databases were not searched as the authors preferred books

and authentic web references to complement IEEE Xplore

and ACM Digital Library results. The authors believe that

searching within additional electronic databases like Com-

pendex and ISI Web of Science would have increased the

breadth of primary studies. The authors acknowledge the

fact that additional work is needed to mitigate threats to ex-

ternal validity.

For each paper of interest, relevant material was ex-

tracted and compared against other relevant literature,

specifically the abstract, introduction and the conclusion of

each of the articles. The references at the end of each ar-

ticle proved to be a useful source of further investigation.

The summary performed on research articles was comple-

mented by textbooks written by well-known authors in the

field of software metrics and software testing. It is expected

that by referring to multiple perspectives on a relevant topic,

performing an exhaustive search in two of the largest re-

search databases and then following the references in all

relevant papers, contributed towards reducing internal va-

lidity threats.

3. Relevant definitions and concepts

Software measurement is integral in improving software

development [35]. There can be two applications of soft-

ware metrics, tactical and strategic. The tactical use of met-

rics is useful in project management whereas the strategic

application of software metrics is in software process im-

provement [19].

An entity is an object (e.g. programming code, software

under test) or an event (e.g. test planning phase) in the real

world [16]. An attribute is the feature, property or charac-

teristic of an entity which helps us to differentiate among

different entities.

There can be three categories of measures depending

upon the entity being measured, namely process, prod-

uct and resource measures [16]. Process metrics are used

to measure the characteristics of methods, techniques and

tools employed in the development, implementation and

maintenance of the software system [26].

4. Software testing lifecycle

The traditional approach to testing was seen as execut-

ing tests [13]; but a modern testing process is a lifecy-

cle approach that includes different phases (for a variety

of proposed software testing life cycle stages please see

e.g. [13, 23, 25, 38, 44, 45]). Consolidating the different

views leads us to categorize software testing into test plan-

ning, test design, test execution and test review phases.

4.1. Test planning

The goal of test planning is to take into account the im-

portant issues of testing strategy, resource utilization, re-

sponsibilities, risks and priorities. Also identification of

methodologies, techniques and tools is part of test planning

which is dependent on the type of software to be tested, the

test budget, the risk assessment, the skill level of available

staff and the time available [25]. The output of the test plan-

ning is the test plan document.

4.2. Test design

The test design process is very broad and includes criti-

cal activities like determining the test objectives (i.e. broad

categories of things to test), selecting test case design tech-

niques, preparing test data, developing test procedures, set-

ting up the test environment and supporting tools. Deter-

mination of test objectives is a fundamental activity which

leads to the creation of a testing matrix reflecting the funda-

mental elements that needs to be tested to satisfy an objec-

tive. The objectives are transformed into a list of items that

are to be tested under an objective. The test objectives are

then used to create test cases. The test cases then become

part of a document called the test design specification [27].

After the test design specification is produced, a test case

specification is constructed, which describes how the tests

will be run. A test procedure describes a switch over from

one test to another [45].

4.3. Test execution

The test execution phase involves allocating test time and

resources, running all or selected test cases, collecting exe-

cution information and measurements and observing results

to identify system failures [13, 27]. At system test level,

normally testers are involved but developers and end users

may also participate. For our purposes the above description

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:23 from IEEE Xplore.  Restrictions apply. 



is sufficient (we are focusing on the software test planning

and test design processes in this paper).

4.4. Test review

The purpose of the test review process is to analyze the

data collected during testing to provide feedback to the test

planning, test design and test execution activities. Different

assessments can be performed as part of test review which

includes reliability analysis, coverage analysis and overall

defect analysis.

5. Attributes for test planning process

The attributes to be measured are dependent on the time

and phase in the software development life cycle, new busi-

ness needs and ultimate goal of the project [32]. Useful at-

tributes for measurement during software test planning are

identified in the next section.

5.1. Progress

Suspension Criteria. The suspension criteria for testing

establish conditions for suspending testing. Exit Criteria.
The exit criteria for testing needs to be based on metrics so

that an exit criterion is flagged after meeting a condition.

Scope of Testing. The scope of testing helps to answer how

much of the software is to be tested and metrics helps an-

swering this question. Monitoring of Testing Status. The

testing status needs to be monitored as on time and in budget

completion of testing tasks is essential to meet schedule and

cost goals. Staff Productivity. Measures for testers produc-

tivity should be established at the test planning phase to help

a test manager learn how a software tester distributes time

over various testing activities [12]. Tracking of Planned
and Unplanned Submittals. The test planning progress is

affected by the incomplete or incorrect source documenta-

tion as submittals [19]. The tracking of planned and un-

planned submittals therefore becomes important so that a

pattern of excessive or erratic submittals can be assessed.

5.2. Cost

Testing Cost Estimation. Metrics supporting testing

budget estimation are required as the test planning phase

also has to establish the cost estimates. Duration of Test-
ing. Metrics assisting creation of a testing schedule are re-

quired as a testing schedule is one of the important elements

of test planning. Resource Requirements. The test plan-

ning activity has to estimate the number of testers required

for carrying out the system testing activity. Training Needs

of Testing Group and Tool Requirement. Metrics indicat-

ing the need of training for testing group and tool require-

ment needs are to be established.

5.3. Quality

Test Coverage. A testing group wants to measure per-

centage of code, requirements and design covered by a test

set. Effectiveness of Smoke Tests. Metrics establishing the

effectiveness of smoke tests are required to be certain that

application is stable enough for testing. Quality of Test
Plan. The quality of the test plan produced needs to be as-

sessed for attributes that are essential for an effective test

plan. Fulfillment of Process Goals. It is useful to measure

the extent to which the test planning activity is meeting the

process goals expected of it.

5.4. Improvement trends

Faults Prior to Testing. The count of faults (fault con-

tent) captured prior to testing during requirements analy-

sis and design phases identify resource training needs and

process improvement opportunities. Expected Number of
Faults. An estimate of an expected number of faults helps

gauging the quality of the software. Bug Classification.
The test planning activity needs to classify bugs into types

and severity levels.

Table 1 shows the attribute classification in different cat-

egories.

Table 1. Classification of test planning at-
tributes.

Progress

Suspension criteria for testing

Exit criteria

Scope of testing

Monitoring of testing status

Staff productivity

Tracking of (un)planned submittals

Cost

Testing cost estimation

Duration of testing

Resource requirements

Training needs and tool requirements

Quality

Test coverage

Effectiveness of smoke tests

Quality of test plan

Fulfillment of process goals

Improvement trends

Count of faults prior to testing

Expected number of faults

Fault classification

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:23 from IEEE Xplore.  Restrictions apply. 



6. Attributes for test design process

After having defined the attributes of the software test

planning process, we are interested in identifying the at-

tributes of the software test design process. Identification

of attributes leads to selection of measures, which is an im-

portant step in establishing a measurement program [5].

6.1. Progress

Tracking Testing Progress. Tracking (or monitoring)

the testing progress gives early indication if the testing ac-

tivity is behind schedule and to flag appropriate measures to

deal with the situation. Tracking Testing Defect Backlog.
A large number of unresolved faults prior to test design neg-

atively impact the test progress [28]. Therefore, it is useful

to track the testing defect backlog over time. Staff Produc-
tivity. Measurement of staff productivity in developing test

cases helps in estimating cost and duration of incorporating

change [16].

6.2. Cost

Cost Effectiveness of Automated Tools. When a tool

is selected to be used for testing, it is beneficial to come up

with metrics that evaluate the cost effectiveness of tool.

6.3. Size

Estimation of Test Cases. If an initial estimate of num-

ber of test cases required to fully exercise the application

is available, then the activity of test case development can

progress well. Number of Regression Tests. The number

of regression tests is an important factor to ensure that any

changes and bug fixes have been correctly implemented and

does not negatively affect other parts of the software. Tests
to Automate. It is important to take the decision about

which test cases to automate as to balance the cost of test-

ing as some tests are more expensive to automate than if

executed manually [14].

6.4. Strategy

Sequence of Test Cases. Since not all test cases are of

equal importance, they need to be prioritized according to

a particular rationale. Identification of Areas for Further
Testing. As exhaustive testing is rarely possible, the test

design process needs to identify high-risk areas that require

more testing [13]. These areas might be e.g. critical parts

of a system or code that is being exercised often. Combi-
nation of Test Techniques. Pertaining to focus on system

testing, it is important to know what combination of test

techniques to use that discovers more faults. Adequacy of

Test Data. Adequate test data needs to be prepared to ex-

pose as many faults as possible.

6.5. Quality

Effectiveness of Test Cases. Test effectiveness is the

fault-finding ability of the set of test cases [23]. Measures

that establish the quality of test cases produced are required

to determine how good a test case is being developed. Ful-
fillment of Process Goals. As with test planning, it is use-

ful to measure the extent to which the test design activity

is meeting the expected process goals. Test Completeness.
As the test cases are developed, it is imperative that the re-

quirements and code are covered properly [40]. This is to

ensure the completeness of tests [19].

The classification of attributes in different categories is

presented in Table 2.

Table 2. Classification of test design at-
tributes.

Progress

Tracking testing process

Tracking testing defect backlog

Staff productivity

Cost Cost effectiveness of automated tools

Size

Estimation of test cases

Number of regression tests

Tests to automate

Strategy
Sequence of test cases

Identification of areas for further testing

Quality

Combination of test techniques

Adequacy of test data

Effectiveness of test cases

Fulfillment of process goals

Test completeness

7. Metrics for test planning attributes

We proceed to address available metrics for each at-

tribute within the individual categories of progress, cost,

quality and improvement trends identified for software test

planning.

7.1. Metrics support for progress

The category of progress included attributes named as

suspension criteria for testing, the exit criteria, scope of

testing, monitoring of testing status, staff productivity and

tracking of planned and unplanned submittals. Monitor-

ing of testing status is discussed in combination with track-

ing testing progress attribute while staff productivity is dis-

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:23 from IEEE Xplore.  Restrictions apply. 



cussed with the same attribute being identified as part of

software test design attributes.

7.1.1 Measuring suspension criteria for testing.

One way to suspend testing is when there are a specific

number of severe faults or total faults detected by testing

that makes it impossible for the testing to move forward. In

such a case, suspension of testing acts as a safeguard for

precious testing time-scales. Also in case of dependencies

among the testing activities, if there is an activity on a criti-

cal path, the subsequent activities need to be halted until this

task is complete [13]. Any incompleteness in the different

aspects of test environment (hardware, communications, in-

terfaces, documentation, software, supplies, personnel and

facilities [13]) may also prevent testing of the application.

7.1.2 Measuring the exit criteria.

The metrics that help clarifying the exit criteria for test-

ing includes rate of fault discovery in regression tests, fre-

quency of failing fault fixes and fault detection rate.

7.1.3 Measuring scope of testing.

The factors influencing the decision regarding testing scope

are driven by situational circumstances including number of

available testing resources, amount of available testing time,

areas that are more prone to faults, areas that are changed in

the current release and areas that are most frequently used

by the customer.

7.1.4 Tracking of planned and unplanned submittals.

Planned submittals are those that are required to be submit-

ted according to a schedule and unplanned submittals are

those that are resubmitted due to the problems in the sub-

mitted submittals. If any of these submittals are incomplete

or incorrect, it can lead to situations where these submit-

tals are to be resubmitted again so that testing activities can

progress. Therefore, tracking of planned and unplanned

submittals can identify potential problems in the process

leading towards testing. Grady gives an example of tracking

planned and unplanned submittals for a project on monthly

basis [19].

7.2. Metrics support for cost

The category of cost included attributes named as testing

cost estimation, duration of testing, resource requirements

and training needs of testing group and tool requirement.

The training needs of testing group and tool requirement are

discussed in combination with tests to automate attributes

identified as part of software test design attributes.

7.2.1 Measuring testing cost estimation, duration of
testing and testing resource requirements.

We will use the term cost estimation here as a common term

that includes predictions about the likely amount of effort

time, budget and staffing levels required. Formal estimates

regarding the time and resources for testing milestones are

important as they allow planning for risks and contingen-

cies in time [3, 13]. However, the important question is,

is it possible to objectively estimate testing time? Accord-

ing to [14], estimation formulas that make use of complex

equations are not only difficult to use, they are also rarely

precise. Hence, what follows are some examples (found

in [14, 24, 32]) of some simple to use models for estimating

time and resources.

First of all, the development ratio method makes use of

software development effort estimation as a basis for es-

timating the resource requirements for the testing effort,

thereby helping to outline an estimated testing schedule.

Another similar method estimating the tester to developer

ratio makes use of heuristics. Project staff ratio method

makes use of historical metrics by calculating the percent-

age of testing personnel from overall allocated resources

planned for the project. The test procedure method uses the

size measures of testing artifacts like the planned number of

test procedures for estimating the number of person hours

of testing and number of testers required. The task plan-

ning method makes use of the historical records of number

of personnel hours expended to perform testing tasks to es-

timate a required level of effort. Expert opinion involves

true experts making the effort estimates if size estimates are

available to be used as benchmark data. Experts use work

and activity decomposition and system decomposition to

make estimations. Finally, estimation by analogy makes use

of analogs (completed projects that are similar) and use of

experience and data from those to estimate the new project.

This method can both be tool-based or manual.

7.3. Metrics support for quality

The category of quality included attributes named as test

coverage, effectiveness of smoke tests, the quality of test

plan and fulfillment of process goals. Test coverage is dis-

cussed in combination with test completeness attribute be-

ing identified as part of software test design attributes.

7.3.1 Measuring effectiveness of smoke tests.

There are some established best practices when it comes

to measurement of the effectiveness of smoke tests. These

practices recommend smoke tests to be broad in scope as

opposed to depth, smoke tests should exercise the system

from end-end, they should cover the most frequently used

and basic operations, smoke tests need to be automated

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:23 from IEEE Xplore.  Restrictions apply. 



and made part of the regression testing suite, the number

of smoke tests are to increase in size and coverage as the

system evolves, a system test environment is required for

smoke testing and smoke tests need to take advantage of

historical database of fault-finding subset of test suites that

have proved valuable over other projects.

7.3.2 Measuring the quality of the test plan.

A test plan can only be evaluated in terms of functions that

it intends to serve [2]. According to the test plan evalua-

tion model presented by [2], a test plan needs to possess the

quality attributes of usefulness, accuracy, efficiency, adapt-

ability, clarity, usability, compliance, foundation and fea-

sibility. These quality attributes are to be assessed using

heuristics i.e. accepted rules of thumb reflecting experience

and study. Berger describes a multi-dimensional qualitative

method of evaluating test plans using rubrics [7]. Rubrics

take the form of a table, where each row represents a par-

ticular dimension, and each column represents a ranking of

the dimension as excellent, average and poor.

7.3.3 Measuring fulfillment of process goals.

Test planning makes a fundamental maturity goal at the

Testing Maturity Model (TMM) level 2 [10]. The goals at

TMM level 2 support testing as a managed process. A man-

aged process is planned, monitored, directed, staffed and or-

ganized. The setting of goals is important because they be-

come the basis for decision making. The test plan includes

both general testing goals and lower level goal statements.

An organization can use a checklist to evaluate the process

of test planning.

7.4. Metrics support for improvement
trends

The category of improvement trends included attributes

such as count of faults prior to testing, expected number of

faults and bug classification. Count of faults prior to testing

and expected number of faults are discussed in combina-

tion with identification of areas for further testing attribute

which was identified in the software test design process.

7.4.1 Bug classification.

There are different ways to classify the faults found in the

application during the course of system testing. One such

classification categorizes the faults as algorithmic and pro-

cessing, control, logic and sequence, typographical, initial-

ization, data flow, data, module interface, code documenta-

tion and external hardware/software interfaces defects [10].

Gray [21] classifies the faults as being deterministic (per-

manent) and transient (temporary) faults. Vaidyanathan and

Trivedi [47] extend this classification to include aging re-

lated faults that refer to potential fault conditions that accu-

mulate gradually over time, leading to performance degra-

dation.

8. Metrics for test design attributes

We proceed to address available metrics for each at-

tribute within the individual categories of progress, quality,

size, cost and strategy identified for software test planning.

8.1. Metric support for progress

The category of progress included attributes named as

tracking testing progress, tracking testing defect backlog

and staff productivity.

8.1.1 Tracking testing process.

The testing activity being monitored can be projected us-

ing graphs that show trends over a selected period of time.

For the testing milestone of execution of all planned system

tests, the data related to number of planned system tests cur-

rently available and the number of executed system tests at

this date should be available. Number of requirements or

features to be tested, number of equivalence classes identi-

fied, number of equivalence classes actually covered, num-

ber of degree of requirements or features actually covered,

number of features actually covered/total number of fea-

tures are some of the metrics for monitoring the coverage

at the system testing level [10]. For monitoring of test case

development at the system testing level, useful measures are

number of planned test cases, number of available test cases

and number of unplanned test cases [10]. The test progress

S-curve compares the test progress with the plan to indicate

corrective actions in case the testing activity falls behind

schedule [28].

8.1.2 Tracking testing defect backlog.

Defect backlog is the number of defects that are outstanding

and unresolved at one point in time with respect to the num-

ber of defects arriving. Then there are defects that are not

fixed due to resource constraints. The defect backlog metric

is to be measured for each release of a software product for

release to release comparisons [28]. The defects that affect

and halt the testing progress should be given priority in fix-

ing. Another way to prioritize the reduction in defect back-

log is on the basis of impact on customer which can help

the developers to focus efforts on critical problems [36].

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:23 from IEEE Xplore.  Restrictions apply. 



8.1.3 Staff productivity.

Brooks observed that adding more people on a software

project will make it even more late. This law is believed to

hold not as strongly in testing as in other areas of software

engineering [8]. In spite of the fact that productivity mea-

sures for testers are not extensively reported, a test manger

is interested in learning about the productivity of their staff

and how it changes as the project progresses. Time spent

in test planning and test case design, number of test cases

developed and number of test cases developed/unit time are

useful measures of testers productivity [10]. The evalua-

tion of individual testers is multi-dimensional, qualitative,

multi-source, based on multiple samples and individually

tailored. The primary sources of information in this case

are not numeric, rather specific artifacts are reviewed, spe-

cific performances are assessed and the work of testers is

discussed with others to come up with an evaluation [29].

8.2. Metric support for quality

The category of quality included attributes named as ef-

fectiveness of test cases, fulfillment of process goals and

test completeness.

8.2.1 Measuring effectiveness of test cases.

Common methods available for verifying test case speci-

fications include inspections and traceability of test case

specifications to functional specifications. However, there

needs to be an in-process evaluation of test case effective-

ness [11] so that problems are identified and corrected in

the testing process before the system goes into production.

Chernak describes a simple in-process test case effective-

ness metric [11] defining test case effectiveness as the ratio

of faults found by test cases to the total number of faults

reported during a function testing cycle. Defect removal

efficiency is another powerful metric for test effectiveness,

which is defined as the ratio of number of faults actually

found in testing to the number of faults that could have been

found in testing. Defect age is another metric that can be

used to measure the test effectiveness, which assigns a nu-

merical value to the fault depending on the phase in which

it is discovered. Defect age is used in another metric called

defect spoilage to measure the effectiveness of defect re-

moval activities. The effectiveness of the test cases can also

be judged on the basis of the coverage provided. It is a

powerful metric in the sense that it is not dependent on the

quality of the software and also it is an in-process metric

that is applicable when the testing is actually done.

8.2.2 Measuring fulfillment of process goals.

The software test design process should be able to perform

the activities that are expected of it. The common way of

assessing the conformance to a process is using a checklist.

One such checklist is presented by Black in [9].

8.2.3 Measuring test completeness.

We emphasize more on specification coverage measures as

these measures are more applicable at the system testing

level. There are two important questions that need to be an-

swered when determining the sufficiency of test coverage.

One is that whether the test cases cover all possible out-

put states and second is about the adequate number of test

cases to achieve test coverage [37]. A common require-

ments coverage metric is the percentage of requirements

covered by at least one test [40]. In black box testing, as we

do not know the internals of the actual implementation, the

test coverage metrics tries to cover the specification [39].

The specification coverage measures are recommended for

safety critical domains [48]. Specification coverage mea-

sures the extent to which the test cases conform to the

specification requirements. These metrics provide objec-

tive and implementation-independent measures of how the

black box test suite covers requirements [48]. According

to [48], three potential metrics that could be used to assess

requirements coverage are requirements coverage, require-

ments antecedent coverage and requirements UFC (Unique

First Cause Coverage). Another approach to measure test-

ing coverage independent of source code is given by [17, 1].

This approach applied model checking and mutation analy-

sis for measuring test coverage using mutation metric.

8.3. Metric support for cost

The category of cost included an attribute named cost

effectiveness of automated tools.

8.3.1 Measuring cost effectiveness of automated tools.

The evaluation criteria for a testing tool must consider its

compatibility with operating systems, databases and pro-

gramming languages used organization wide. The perfor-

mance requirements for significant applications under test

in the organization, need for more than one tool, support for

data verification, types of tests to automate and cost of train-

ing are important factors in the evaluation criteria. Specif-

ically, the evaluation criteria for evaluating a testing tool

includes ease of use, power, robustness, functionality, ease

of insertion, quality of support, cost of the tool and fit with

organizational policies and goals [10].

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:23 from IEEE Xplore.  Restrictions apply. 



8.4. Metric support for size

The category of size included attributes named as esti-

mation of test cases, number of regression tests and tests to

automate. Estimation of test cases is discussed with com-

bination of testing techniques attribute of the software test

design process.

8.4.1 Measuring number of regression tests.

A number of regression test selection techniques are pre-

sented by Rothermel et al. in [41]. Use of program com-

plexity measures (e.g. cyclomatic complexity and Halstead

metrics), knowledge of software design, defect removal per-

centage and a measure of defect reported in each baseline

help selecting regression tests [40]. Different metrics can

be used to monitor regression testing including number of

test cases reused, number of test cases added to the tool

repository or test database, number of test cases re-run when

changes are made to the software, number of planned re-

gression tests executed, number of planned regression tests

executed and passed [10].

8.4.2 Measuring tests to automate.

The software testing staff must be adequately trained in test-

ing of applications because there is a strong relationship

between increased training and improved worker produc-

tivity, profitability and shareholder value [13]. The testing

group needs to understand the business needs, be techni-

cally proficient and have sound communication and writing

skills. The different methods of training include mentoring,

on-site commercial training, training in a public forum, in-

house training and specialty training [13]. The testing strat-

egy should consider making use of automated tool wher-

ever the needs warrants its use. The benefits of automation

include speed, efficiency, accuracy and precision, resource

reduction and repetitiveness [34] but automation should not

be considered as a substitute for human intuition and if au-

tomation runs without finding a fault, it does not mean that

there is no fault remaining. Tasks that are repetitive in na-

ture and tedious to be performed manually are prime candi-

dates for an automated tool.

8.5. Metric support for strategy

The category of strategy included attributes named as se-

quence of test cases, identification of areas for further test-

ing, combination of test techniques and adequacy of test

data.

8.5.1 Sequence of test cases.

Sequence of test cases is dependent on the prioritization of

test cases with the purpose of increasing the rate of fault

detection, increasing the detection of high-risk faults, in-

creasing the coverage of code under test and increasing the

reliability of the system under test. Test case prioritization

techniques can either be general or version specific [42].

General test case prioritization techniques are useful over a

sequence of subsequent modified versions of a given pro-

gram while version specific test case prioritization tech-

niques are less effective on average over a succession of

subsequent releases. While selecting a test case prioritiza-

tion technique, there are different considerations, such as

granularity levels, incorporation of feedback to adjust for

test cases already executed and making use of the modified

program version [15]. In [15], Elbaum et al. classify eigh-

teen test case prioritization techniques into three categories.

Experiments and case studies have shown that the use of

test case prioritization techniques improves the rate of fault

detection [15, 43].

8.5.2 Measuring identification of areas for further test-
ing.

During code development, if it can be predicted which files

or modules are likely to have the largest concentrations of

faults in the next release of a system [6], the effectiveness

and efficiency of testing activities can be improved. One

way to predict the number of faults in files is using a fault-

prediction model like a negative regression model. This

model predicts the faults for each file of a release based on

characteristics like file size, whether the file was new to the

release or changed or unchanged from the previous release,

the age of the file, the number of faults in the previous re-

lease and the programming language [6]. Khoshgoftaar et

al. [31] used software design metrics and reuse information

(i.e. whether a module is changed from previous release) to

predict the actual number of faults in the module. Graves et

al. reported a study in which the fault predictions in a mod-

ule were based on modules age, the changes made to the

module and the ages of the module [20]. Ohlsson and Al-

berg predict the fault proneness of software modules based

entirely on the pre-coding characteristics of the system de-

sign [33]. Another approach to predict fault prone modules

is using random forests [22].

8.5.3 Measuring combination of testing techniques.

The black box testing techniques is the dominant type of

testing at the system level. A study by Torkar and Manke-

fors [46] compares three black box techniques namely

equivalence partitioning, random testing and boundary

value analysis to find the efficiency with respect to find-

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:23 from IEEE Xplore.  Restrictions apply. 



ing severe faults. Equivalence partitioning was found to be

the single most effective test methodology to detect faults

that leads to severe failures. Another study carried out

by Lauterbach and Randall (found in [49]) compared six

testing techniques and the results indicated that a combi-

nation of different techniques discovered as many as 20

faults in the software that were not previously found. A

study carried out by Basili and Selby [4] compared three

testing strategies and one of their results showed that in-

case of professional programmers, code reading resulted in

higher fault detection rates than functional and structural

testing. An approach by Schroeder and Korel claim to sig-

nificantly reduce the number of black box tests by identify-

ing relationships between program inputs and outputs [43].

Kaner and Bach lists down a list of paradigms of black

box software testing in [30]. A testing paradigm defines

types of tests that are relevant and interesting. The list of

paradigms for black box testing involves the testing tech-

niques types of domain driven, stress driven, specification

driven, risk driven, random/statistical, functional, regres-

sion, scenario/use case/transaction flow, user testing and ex-

ploratory. Moreover, there is a considerable consensus in

using a combination of testing techniques to take advantage

of the strengths of each [13, 14, 32].

8.5.4 Measuring adequacy of test data.

The prerequisites for an effective test data are a good

data dictionary and detailed design documentation [14].

While acquiring the test data, there are several concerns

to address including depth, breadth and scope of test data,

data integrity during test execution and conditions specific

data [14]. Gerhart and Goodenough laid the foundations

of test adequacy criterion by defining it as a predicate that

defines what properties of a program must be exercised to

constitute a thorough test [18]. Weyuker defined 11 axioms

for program based test adequacy criteria, a critique of this

effort is that the paper is theoretical with few hints for prac-

titioners (see e.g. [49]).

9. Conclusions

The majority of metrics in literature focuses on the test

execution phase and are based on the number of faults found

during test execution. This study contributes by consolidat-

ing the rather dispersed attributes of software test planning

and test design processes. Similarly, partitioning the at-

tributes in different categories is a step to a hierarchical view

of the identified attributes, which clarifies their structure,

eases understanding and can lead to further research within

each category. The study presented the different ways to

measure each of the attributes with the intention to provide

a variety of methods for the manager to consider based on

project and process specifics. Now the project team has to

decide among the most effective of the metrics to use from

a reference set as presented in this study.

An interesting aspect, resulting from this work, is that al-

though measurements help informed decision making, a de-

gree of subjectivity, expert judgment and analogy still plays

important roles in the final decision relating to software test

planning and test design. An organization can build an ef-

fective testing strategy that includes measurements in these

two processes on the foundations of attributes identified in

the study. Such an effort should lead to informed decision

making about different software testing activities, and pro-

vide a baseline for measuring improvements.

10. Future work

During the course of this work, some related areas were

found to be relevant to further investigation. One of these

areas addresses the possible investigation into the measur-

able attributes of software test execution and software test

review phases and the metric support available for those

attributes. Another interesting area is to explore metric

support at each level of testing including unit, integration

and user acceptance levels. Further areas of work also in-

clude answers to questions like how to integrate the identi-

fied metrics into an organization-wide software metrics pro-

gram, how to collect the metrics data in an optimal way and

how valid and reliable the identified metrics are.

References

[1] P. Ammann and P. E. Black. A Specification-Based Cov-

erage Metric to Evaluate Test Sets. In HASE ’99: The 4th
IEEE International Symposium on High-Assurance Systems
Engineering, pages 239–248, Washington, DC, USA, 1999.

IEEE Computer Society.

[2] J. Bach. Test Plan Evaluation Model. Professional Report,

Satisfice, Inc., VA, USA, 1999.

[3] N. Bajaj, A. Tyagi, and R. Agarwal. Software Estimation:

A Fuzzy Approach. SIGSOFT Software Engineering Notes,

31(3):1–5, 2006.

[4] V. R. Basili and R. W. Selby. Comparing the Effectiveness of

Software Testing Strategies. IEEE Transactions on Software
Engineering, 13(12):1278–1296, 1987.

[5] M. J. Bassman, F. McGarry, and R. Pajerski. Software Mea-

surement Guidebook NASA-GB-001-94. Technical report,

National Aeronautics and Space Administration, Goddard

Space Flight Center, Maryland, WA, USA, 1994.

[6] R. M. Bell, E. J. Weyuker, and T. J. Ostrand. Predicting the

Location and Number of Faults in Large Software Systems.

IEEE Transactions on Software Engineering, 31(4):340–

355, 2005.

[7] B. Berger. Evaluating Test Plans Using Rubrics. In STAR
West, Anaheim, CA, USA, November 2004.

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:23 from IEEE Xplore.  Restrictions apply. 



[8] R. Black. Managing the Testing Process. Microsoft Press,

Redmond, WA, USA, 1999.
[9] R. Black. Critical Testing Processes: Plan, Prepare, Per-

form, Perfect. Addison-Wesley Longman Publishing Co.,

Inc., Reading, MA, USA, 2004.
[10] I. Burnstein, T. Suwannasart, and R. Carlson. Developing

a Testing Maturity Model for Software Test Process Evalu-

ation and Improvement. In Proceedings of the IEEE Inter-
national Test Conference on Test and Design Validity, pages

581–589, Washington, DC, USA, 1996. IEEE Computer So-

ciety.
[11] Y. Chernak. Validating and Improving Test-Case Effective-

ness. IEEE Software, 18(1):81–86, 2001.
[12] J.-F. Collard and I. Burnstein. Practical Software Testing.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.
[13] R. D. Craig and S. P. Jaskiel. Systematic Software Testing.

Artech House, Inc., Norwood, MA, USA, 2002.
[14] E. Dustin. Effective Software Testing : 50 Specific Ways to

Improve Your Testing. Addison-Wesley Longman Publish-

ing Co., Inc., 2003.
[15] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test Case

Prioritization: A Family of Empirical Studies. IEEE Trans-
actions on Software Engineering, 28(2):159–182, 2002.

[16] N. E. Fenton. Software Metrics: A Rigorous Approach.

Chapman & Hall, Ltd., London, UK, UK, 1991.
[17] A. Gargantini and C. Heitmeyer. Using Model Checking

to Generate Tests from Requirements Specifications. In

ESEC/FSE-7: Proceedings of the 7th European Software
Engineering Conference Held Jointly with the 7th ACM SIG-
SOFT International Symposium on Foundations of Software
Engineering, pages 146–162, London, UK, 1999. Springer-

Verlag.
[18] J. B. Goodenough and S. L. Gerhart. Toward a Theory

of Test Data Selection. In Proceedings of the Interna-
tional Conference on Reliable Software, pages 493–510,

New York, NY, USA, 1975. ACM Press.
[19] R. B. Grady. Practical Software Metrics for project Manage-

ment and Process Improvement. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1992.
[20] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Pre-

dicting Fault Incidence Using Software Change History.

IEEE Transactions on Software Engineering, 26(7):653–

661, 2000.
[21] J. Gray. Why do Computers Stop and What can be Done

About It? Tandem Technical Reports, July 1985.
[22] L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust Prediction

of Fault-Proneness by Random Forests. In ISSRE ’04: Pro-
ceedings of the 15th International Symposium on Software
Reliability Engineering, pages 417–428, Washington, DC,

USA, 2004. IEEE Computer Society.
[23] M. L. Hutcheson. Software Testing Fundamentals: Methods

and Metrics. John Wiley & Sons, Inc., New York, NY, USA,

2003.
[24] K. Iberle and S. Bartlett. Estimating Tester to Developer

Ratios (or Not). In Proceedings of the 25th Annual Pa-
cific Northwest Software Quality Conference, Portland, OR,

USA, October 2006.
[25] Institute of Electrical and Electronics Engineers. IEEE Std

1059-1993 IEEE Guide for Software Verification and Vali-
dation Plans, 1993.

[26] Institute of Electrical and Electronics Engineers. IEEE
Std 1061-1998 IEEE Guide for Software Quality Metrics
Methodology, 1998.

[27] Institute of Electrical and Electronics Engineers. IEEE Std
829-1998 IEEE Guide for Software Test Documentation,

1998.

[28] S. H. Kan. Metrics and Models in Software Quality En-
gineering. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2002.

[29] C. Kaner. Measuring the Effectiveness of Software Testers.

In International Conference for Software Testing Analysis
and Review (STAR East), Orlando, FL, USA, May 2006.

[30] C. Kaner and J. Bach. Paradigms of Black

Box Testing (keynote address at Software Test-

ing, Analysis & Review Conference (STAR) West).

http://www.kaner.com/pdfs/swparadigm.pdf, November

1999.

[31] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and

N. Goel. Early Quality Prediction: A Case Study in

Telecommunications. IEEE Software, 13(1):65–71, 1996.

[32] L. M. Laird and M. C. Brennan. Software Measurement
and Estimation: A Practical Approach (Quantitative Soft-
ware Engineering Series). Wiley-IEEE Computer Society

Pr, 2006.

[33] N. Ohlsson and H. Alberg. Predicting Fault-Prone Software

Modules in Telephone Switches. IEEE Transactions on Soft-
ware Engineering, 22(12):886–894, 1996.

[34] R. Patton. Software Testing (2nd Edition). Sams, Indianapo-

lis, IN, USA, 2005.

[35] D. J. Paulish and A. D. Carleton. Case Studies of Software-

Process-Improvement Measurement. Computer, 27(9):50–

57, 1994.

[36] T. Pearse, T. Freeman, and P. Oman. Using Metrics to Man-

age the End-Game of a Software Project. In METRICS ’99:
Proceedings of the 6th International Symposium on Soft-
ware Metrics, page 207, Washington, DC, USA, 1999. IEEE

Computer Society.

[37] P. Piwowarski, M. Ohba, and J. Caruso. Coverage mea-

surement Experience During Function Test. In ICSE ’93:
Proceedings of the 15th International Conference on Soft-
ware Engineering, pages 287–301, Los Alamitos, CA, USA,

1993. IEEE Computer Society Press.

[38] R. S. Pressman. Software Engineering: A Practitioner’s Ap-
proach. McGraw-Hill Higher Education, 2001.

[39] T. Pyhälä and K. Heljanko. Specification Coverage Aided

Test Selection. In ACSD ’03: Proceedings of the Third Inter-
national Conference on Application of Concurrency to Sys-
tem Design, page 187, Washington, DC, USA, 2003. IEEE

Computer Society.

[40] S. R. Rakitin. Software Verification and Validation for Prac-
titioners and Managers. Artech House, Inc., Norwood, MA,

USA, 2nd edition, 2001.

[41] G. Rothermel and M. J. Harrold. Analyzing Regression Test

Selection Techniques. IEEE Transactions on Software En-
gineering, 22(8):529–551, 1996.

[42] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing Test

Cases For Regression Testing. IEEE Transactions on Soft-
ware Engineering, 27(10):929–948, 2001.

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:23 from IEEE Xplore.  Restrictions apply. 



[43] P. J. Schroeder and B. Korel. Black-Box Test Reduction Us-

ing Input-Output Analysis. In ISSTA ’00: Proceedings of the
2000 ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 173–177, New York, NY, USA,

2000. ACM Press.
[44] J. Seo and B. Choi. Tailoring Test Process by Using the

Component-Based Development Paradigm and the XML

Technology. In APSEC ’00: Proceedings of the Seventh
Asia-Pacific Software Engineering Conference, page 356,

Washington, DC, USA, 2000. IEEE Computer Society.
[45] J. Tian. Software Quality Engineering: Testing, Quality As-

surance, and Quantifiable Improvement. Wiley-IEEE Com-

puter Society Press, 2005.
[46] R. Torkar and S. Mankefors. A Comparative Study on Fault

Finding Effectiveness in Common Black-Box Testing Tech-

niques. In Proceedings of the 3rd Conference on Software
Engineering Research and Practice in Sweden, Lund, Swe-

den, 2003.
[47] K. Vaidyanathan and K. S. Trivedi. Extended Classification

of Software Faults Based on Aging, November 2001. Fast

abstract at International Symposium on Software Reliability

Engineering (ISSRE 2001).
[48] M. W. Whalen, A. Rajan, M. P. Heimdahl, and S. P. Miller.

Coverage Metrics for Requirements-Based Testing. In IS-
STA ’06: Proceedings of the 2006 International Symposium
on Software Testing and Analysis, pages 25–36, New York,

NY, USA, 2006. ACM Press.
[49] H. Zhu, P. A. V. Hall, and J. H. R. May. Software Unit

Test Coverage and Adequacy. ACM Computing Surveys,

29(4):366–427, 1997.

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:23 from IEEE Xplore.  Restrictions apply. 


