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Abstract—Projects following iterative software development
methodologies must still be managed in a way as to maximize
quality and minimize costs. However, there are indications that
predicting test effort in iterative development is challenging and
currently there seem to be no models for test effort prediction.

This paper introduces and validates a dynamic Bayesian
network for predicting test effort in iterative software devel-
opment.

The proposed model is validated by the use of data from
two industrial projects. The accuracy of the results has been
verified through different prediction accuracy measurements
and statistical tests.

The results from the validation confirm that the model has
the ability to predict test effort in iterative projects accurately.

Keywords-effort prediction; estimations; testing; agile; dy-
namic Bayesian network

I. INTRODUCTION

Many times, software test teams are responsible to handle
different test activities such as estimation of test effort,
bug identification, test case design, test tool selection, test
team selection, etc. Hence, test managers need to plan the
schedule accurately and efficiently to utilize the testing re-
sources in order to meet deadlines. An accurate and efficient
test effort estimation method could help test managers in
completing projects successfully.

Inaccurate effort estimates may lead to poor quality,
customer dissatisfaction, and developers’ frustration. Project
uncertainty, use of estimation development processes, use of
estimation management processes and the estimator’s experi-
ence, are a few factors that can affect effort estimation errors
[1]. In iterative development, as in traditional development,
accurate project estimates of effort and duration are of high
importance [2]. However, it is challenging to determine the
amount of effort required to perform test and defect fixing
activities. On the one hand, if testers spend too much effort
in testing the schedule may be delayed, while, on the other
hand, if they spend less effort on testing the quality can
be affected [3]. In addition to this, incomplete artifacts
also make it difficult to estimate effort and size [4,5] and
relatively little work has been done on modeling, planning
and controlling iterative development methodologies [6],
particularly in terms of planning and controlling the effort.

Some claim that since the iterations in iterative develop-
ment cycles are frequent there would be no need for planning
and estimating to the extent one can see in traditional
development models. This argument, however, is not true;
project plans and estimations provide a mechanism to keep
track on project progress that helps to achieve project goals
[7], and this is equally true for iterative development.

In this paper we present a model for project managers to
use when predicting software test effort in iterative develop-
ment. The model is simple in its nature, uses few variables
and a straightforward nomenclature. By using a dynamic
Bayesian network we are able to combine various data types
and use these to better predict test effort in iterative projects.
The tool has been validated on data collected from two
projects in industry.

In the next section we cover related work, while Section
IIT presents our model design. The model is then validated
by a pilot test (Section IV) before conducting an industry
validation (Section V). Finally, we conclude the paper in
Section VL.

II. RELATED WORK

In recent years, several researchers [8—10] have used
Bayesian network (BN) to model uncertainties in software
projects, e.g. BNs have been used successfully to support
the managerial decision-making [11], allowing the project
manager to trade-off the resources used against the output
in terms of functionality and quality [12]. What follows next
is a summary of relevant work in this field.

In [8], Rees et al. used Bayesian (graphical) models to
model the uncertainties involved in software testing, quality
process and provide support to test managers to use the
model.

Fenton and Neil [13], and Hearty et al. [14], have
all shown that BNs have many benefits over classical or
regression-based models. The Bayesian network approach
does not rely on a single point value; instead of predicting
a single value of the variable a BN provides a complete
probability distribution.

In 2006, Wang et al. presented a project level estimation
model framework using a Bayesian belief network (BBN)



[15]. Their BBN used four sub-models: component estima-
tion; test effectiveness estimation; residual defect estimation;
and test estimation. By using this framework, estimation of
quality, effort, schedule and scope could be determined at
both project level and in specific phases; hence, providing
support for managerial decision-making. However, the prob-
lem with Wang’s et al. framework was that it had not been
validated in any real project and, further, was not tailored
to any particular development methodology. Moreover, no
statistical and prediction accuracy measures were performed.

In 2009, Hearty et al. [14], presented a Bayesian network
causal model for the extreme programming (XP) methodol-
ogy. They showed how, without using any additional metrics
collection programs, their model could learn from project
data in order to make quantitative effort predictions and
risk assessments. They validated their model in an industry
project. However, the model was validated with one instance
of project data and only two XP practices were introduced
into the model. They focused on project level predictions
rather than specific testing processes.

In [9], Wooff et al. presented an approach for estimating
software testing using a Bayesian graphical model. They
conducted a case study and tried to solve software testing
problems with the help of slightly more formal mechanisms,
such as logical structuring of software testing, test design
and analysis process, incorporation and implication of test
results, probabilistic and statistical treatment of uncertain-
ties. The model used software testers’ expert opinion as main
input.

Abrahamsson et al. [16], proposed an incremental,
iteration-based effort prediction model for agile or iterative
development methodology. They validated the model with
two semi-industrial projects by conducting a case study.
The results indicated, that their model performed better
compared to traditional approaches. However, their model
was not used to estimate test effort, but rather it estimated
development effort in general. Additionally, most of the
participants in their case study were master students and new
to the eXtreme Programming methodology and, hence, one
could question the sample selection and the validity threats
it might lead to.

As far as we know, no framework has been developed for
test effort estimation in iterative development. In this paper
we propose such a framework using a dynamic Bayesian
network and in the next section we present the framework
design.

III. FRAMEWORK DESIGN PROPOSAL

In this section, we explain the proposed framework de-
sign. However, first we introduce the reader to some key
concepts, such as, Bayesian networks, dynamic Bayesian
networks, notations, parameters and nodes.

A. Bayesian Networks

A Bayesian network is composed of nodes and directed
arrows. Nodes represent variables while arrows (directed
edges) represent casual relationship between the nodes. A
node without a parent (i.e. root node) is defined by the
prior probability distribution while nodes with parents (leaf
nodes) are defined through conditional probability distri-
bution (CPD). In other words, a Bayesian network is a
high level representation of a joint probability distribution
for variables used to build a model for a specific problem
[17,18]. One advantage, with Bayesian networks, is the
ability to combine sparse data, prior assumptions and expert
judgment into one single casual model [14].

B. Dynamic Bayesian Networks

Dynamic Bayesian networks (DBN), on the other hand,
are the temporal extensions of the Bayesian networks, it ex-
tends the Bayesian networks by adding temporal dimensions
(time) to the model [14,19]. DBNs explicitly model change
over time, while BNs do not have any explicit temporal
relationships between nodes or variables.

A DBN consist of a sequence of identical BNs, Z;, where
t = 1,2,3,...,n. BEach Z; represents a process that is
modeled at time ¢ (called a time slice) [14]. Time slices are
connected by temporal links; if two time slice structures are
identical, and the temporal links are the same, then the model
is a repetitive temporal model. Furthermore, if conditional
probabilities are also identical, then we call it a dynamic
Bayesian network [20].

Next we look at the requirements we set on our model
design.

C. Model Requirements

The following requirements must be met by the model:

+ To minimize the complexity, the model must be small,
simple and easy to replicate in all iterations.

o The model should be able to learn from project data
and expert opinion.

o The model should be able to respond to any observation
when entered into the model.

o The model should be able to learn in different scenarios
such as when a project is failing (e.g. missing dead-
lines) or succeeding (e.g. meeting deadlines), as well
as performing on an average.

o The model should be able to predict test effort by
considering the impact of different factors such as test
process effectiveness, test team, test tools, etc.

o The model should be able to handle different kind of
data e.g. integer and rank values.

D. Model Limitations

The model has the following limitations:



o The model covers only iterative software development
projects (and as such has not been validated for other
methodologies).

« The model is unable to predict test effort in the first
iteration.

o The model requires Nth iteration data to predict for
N+ 1,N+2,...,N + n iterations.

o Predictions will be valid for the same project whose
data is incorporated into the model.

E. Model Design

Fenton and Pfleeger [21] has described the software
measurements as divided into: processes (related to soft-
ware activities such as development and support); products
(involves the deliverables such as requirements, design and
code); and resources (involves the assets such as people,
tools and equipments).

According to [21], all predictive and estimation models
fall within these three classes. In our case, we have used pro-
cess and resource measurements. To minimize the model’s
complexity, we have chosen not to use product measure-
ments (that category of data could later be incorporated into
the model in order to increase prediction accuracy).

The proposed Bayesian network model (Figure 1) is
composed of two main sections i.e. test process overall
effectiveness (e) and test effort (F), where the test effort
(E) node is controlled by iteration length (1), team size (s)
and test process overall effectiveness (e).

Test process overall effectiveness contains two nodes,
i.e. test process rework effectiveness and test process ef-
fectiveness. Further, rework test effectiveness is controlled
by two nodes such as rework test effort and rework test
process quality nodes. In fragment 2 (see Figure 1), test
process effectiveness is controlled by test process quality
which is further controlled by test tool quality, test team
experience and test case effectiveness nodes. Finally, test
case effectiveness is controlled by the number of defects
found by test cases and the total number of defects found
by nodes. Figure 1 shows how different nodes are linked to
each other in the model.

Previous existing research work has been used to build the
proposed model, more detailed information can be found
in [14,15,22]. Our proposed model is different from the
other existing models as discussed in Section II. Rather than
creating a complex and large model, we have constructed a
simple and small model with few, and what we believe to be,
important nodes or variables that would be easily accessible
in industry.

FE. Model Notations

We have used different notations and symbols to represent
model nodes, such as F for test effort and e for test process
overall effectiveness (see Table I). Subscripts are used with
node symbols to represent a specific iteration number. For
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Figure 1.

example F5 and t4 represent test effort and team size for
iterations number 3 and 4, respectively.

I'V. INITIAL VALIDATION

After the completion of the model design, it is important
to conduct an initial validation of the model by performing
a pilot test. The purpose of the initial validation is to ensure
that a minimum level of quality has been reached, in terms
of prediction accuracy, so that one, then, can perform the
next step, i.e. studies in industry (Section V).

A. Model Behavior

To test the model’s behavior, the authors designed a
project X consisting of a total of eight iterations with
120 hours of available effort for a single iteration. The
model was solely based on initial settings, where no data
or observations were entered into the model. The model
was executed and the test effort (F) output mean, median
and standard deviation (SD) values were observed in order
to evaluate the model’s prediction behavior, which is also
known as baseline scenario (Table II and Figure 2).

The key parameters of the model such as iteration length
(D), test team size (s) and test process overall effectiveness
(e) obviously allowed the test effort graph to increase
gradually with each iteration and, indeed, to model such
kind of behavior was one of the main objectives with the
pilot study.



Table 1
VARIABLE NAME, DESCRIPTION, TYPES, RANGES/VALUES AND FORMULAS.

Name Descr. Type Range/Value Formulas
rte; rework test effort ranked enough, not enough, more than enough [23] -
rtq; rework test process quality ” very low, low, average, high, very high [23] -
re; rework test effectiveness ” ” re; = w
ttq; test tool quality ” ” -
tte; test team experience ” ” -
tpe; test process effectiveness ” ” -
tpq; test process quality ” ” tpgi= wmean(1, ttq;, 5.0, tte;, 1.0, tpe;)
b; #faults found by test cases numeric >0 -
th; total # of faults ” ” -
tee; test case effectiveness ” 0-100 (%) tce; = tbl:,; x 100 [24]
e; test process overall effectiveness ” 0-1 e; = %
l; iteration length ” >1 -
S; test team size ” ” -
E; test effort ” ” E;, =1, xs; Xe¢;
Table 11T
120 TEST EFFORT IN EACH ITERATION {I,, } FOR THE SUCCESS, AVERAGE
100 — —&— Mean (baseline scenario) AND FAILING SCENARIOS.
= . . .
é 80 —&— Median (baseline scenario) I 12 13 " 15 IG 17 18
; 60 p— — —&— Mean-SD (baseline scenario) Success 42 44 44 47 48 50 - -
& 40 —5— Mean+SD (baseline scenario) Average 34 35 35.5 36 40 41 - -
20 Failing 2 2 3 4 4 6 - -
0
1 2 3 4 5 6 7 8 60 pascline (e
Iterations e 50 e L Success (Median)
é 40 L Avfrage (M;dian)
————— Failing (Median)
Figure 2. Test effort with baseline scenario. ; 30 i
£ 20 i
Table 1T 10 '
BASELINE SCENARIO BASED ON INITIAL SETTINGS. | . :
0 L=imoze=
Baseline 1 2 I4 5 6 8
Iterations | Mean  Median SD Mean — SD  Mean + SD terations
I, | 50.92 35.65 48.57 2.35 99.49
I 53.06 37.22 50.5 2.56 103.56 Figure 3. Test effort success, average, and failing scenarios.
I3 | 54.35 38.16 51.68 2.67 106.03
Iy | 5523 38.78 52.51 2.72 107.74
Is | 55.89 39.24 53.13 2.76 109.02
§6 gggg ;ggi 5534695 %;; Hg% The baseline scenarios’ predicted median values for ;-
Is | 573 10,23 5447 583 1177 Iy is in the range of 35.65 to 40.23 as shown in Table II.

A number of different scenarios were then generated
by entering different observations into the test effort (F)
parameter of the model. In this way, we evaluated the
predicted and learned values of E’s future iterations (as
discussed in the next section).

B. Calibration of Parameters

To evaluate the model’s behavior, it was important to
consider various model parameters under different scenar-
i0os [25]. Therefore, we created three different scenarios in
the model namned success, average and failing. The success
scenario represents that the project is making progress (better
than according to plan), the average scenario represents that
the project is going on as planned, while the failing scenario
represents a project failing in some way.

However, we have assumed different values for E under
success, average and failing scenarios for I1—Ig, i.e. in
the range of 42-50, 34—41 and 2-6, respectively. Table III
presents the test effort (£) in each iteration for the success,
average and failing scenarios.

To observe model parameter learning, all values from
Table III were entered into the model, no values for 17 and
Is were entered, allowing the model to predict the test effort
(E) for these iterations. (See Figure 3 for a graph of baseline,
success, average and failing scenarios.)

From the graphs shown in Figure 3, one can see that
the average scenario is very close to the baseline scenario
and begins to stabilize by I5. The failing scenario on the
other hand is far away from the baseline scenario. The low
values of test effort for the failing scenario could be a reason
for this behavior to occur. While in the success scenario E
quickly learned from the observations and, as is evident, the
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predicted values for I7 and Ig are very stable at £z = 39.07
and Eg = 39.51.

In Figure 4, different scenarios for test process overall
effectiveness nodes are shown, and one can see that the
failing scenario shows no improvement until 5, i.e. no
effectiveness improvement. The success scenario, on the
other hand, shows high effectiveness as compared to the
average and failing scenarios and, additionally, its predicted
values for I7 and Ig are very stable.

As we have seen, the test effort () and test process
overall effectiveness (e) propagates as observations are en-
tered and they then update their predictions accordingly,
hence providing a first validation of the model. Similarly,
different scenarios for other nodes such as rework test effort
effectiveness (rte), test process effectiveness (fpe), etc. can
also be generated.

V. INDUSTRY VALIDATION

In this section, we provide details on the industrial vali-
dation of the model. The validation was, initially, performed
by conducting a series of interviews for data collection
purpose, where the respondents had participated in two
projects (Projects A and B). The data collected during the
interviews was then used to perform a validation of the
results with an accompanying analysis.

A. Project A

This section describes how project A data was incorpo-
rated in the model to predict test effort for later iterations.
The data gathered from respondent A regarding project A is
shown in Table IV. The respondent has managed a SCRUM
project the last three years and the data was compiled
after completing several interviews. The company where
the respondent works focuses on several domains, such as,
mobile applications, multimedia, telecom networks, software
tools and enterprise systems.

There were two scenarios developed in the model, i.e.
actual and predicted. Initially, from Table IV, only iteration
length (I) and test team size (s) values of all six iterations
were entered into both scenarios. The remaining variables, as
seen in Table IV (i.e. test tool quality, test team experience,
bugs found by test case, total bugs found, rework test effort

Table IV
PROJECT A DATASET. (FIRST COLUMN PROVIDES THE VARIABLE
NAMES. L=Low, M=MEDIUM, H=HIGH, VH=VERY HIGH,
E=ENOUGH, >E=MORE THAN ENOUGH.)

I I I3 Iy Is Ig

I; 10 10 10 10 10 10

Si 3 3 3 3 3 3

ttq; M M H H H H
tte; L M H H VH VH
b; 0 ~5 ~ 10 ~ 10 ~ 10 ~ 10
tb; 0 5 10 10 10 10
rte; E E E E E >E
rtq; M H H H VH VH

Table V

PROJECT A—ACTUAL VS. PREDICTED TEST EFFORT (WITHOUT
OBSERVATIONS ENTERED).

I I I3 14 15 Is
Actual M 14.41 12.19 10.42 10.42 8.79 9.81
Predicted M 10.40 10.84 11.09 11.25 11.37 11.46

and rework test process quality values from I; to Ig) were
entered only into the actual scenario.

After entering the data from Table IV into the actual
and predicted scenarios, the model was executed and test
effort (£') node median values were observed for actual and
predicted scenarios as shown in Table V.

With the help of Table V, and without entering obser-
vations into the ‘predicted’ scenario, a graph for test effort
(E) node was generated for both ‘actual’ and ‘predicted’
scenarios. Figure 5 clearly shows that for I; the predicted
values are too low and for I5 the predicted values are too
high as compared to the ‘actual’ values and, further, the
‘actual’ graph seems to be a bit unstable. The frequent
changes in test tool quality and test team experience should
account for this behavior.

Next, we examined the model’s ability to learn from the
‘real’ project’s data in order to improve its predictions. Thus,
we took only the predicted scenario and entered data from
the first two complete iterations: I; and I, (see Table IV). As
new data was entered, propagation took place, allowing the
distributions of key parameter to be updated, thus, affecting
the prediction of future iterations (Table VI and Figure 6).

From Figure 6, we can see that the ‘predicted’ graph

s - |===——- Predicted (Median)

Actual (Median)

Test effort (E)
s

Iterations

Figure 5. Project A—Actual vs. predicted test effort.
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Figure 6. Project A—Actual vs. predicted test effort (with observations

I & Is entered).

Table VI
PROJECT A—ACTUAL VS. PREDICTED TEST EFFORT (WITH
OBSERVATIONS ENTERED FOR I & I3).

If! Iz I3 1y I Is
Actual M 14.41 12.19 10.42 10.42 8.79 9.81
Predicted M 14.41 12.19 12.47 12.61 12.67 12.7

has changed, when we entered data from I; and I» into
the model. Further, the ‘predicted’ graph values are high as
compared to the a priori predicted values given in Table V,
instability of actual data and data provided by respondent A
can be a reason for this. Next, I3 data was entered into the
model and the model was executed again. The parameter
probabilities were updated and predictions improved as a
result (Table VII and Figure 7).

The graphs in Figure 7 clearly show the change in the
graph for the predicted test effort when I3 data was entered.
The graph is settled and closer to the ‘actual’ graph and
the predictions for I;—Ig also improve as compared to prior
predictions (Figure 6).

20
)
; 15 Actual (Median)
=
% T E————_—_— e Predicted (Median)
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Figure 7. Project A—Actual vs. predicted test effort (with observations

1113 entered).

Table VII
PROJECT A—ACTUAL VS. PREDICTED TEST EFFORT (WITH
OBSERVATIONS ENTERED FOR [1-13).

I Is 13 1y 15 16
Actual M 14.41 12.19 10.42 10.42 8.79 9.81
Predicted M 14.41 12.19 10.42 10.81 11.05 11.21

Table VIII

PROJECT B DATASET. (FIRST COLUMN PROVIDES THE VARIABLE

NAMES.)
I I I3 Iy Is Is
I; 30 30 30 15 15 15
Si 2 2.5 2.5 2.5 2.5 2.5
ttq; H H H H H H
tte; VH VH VH VH VH VH
b; 0 0 0 2 2 2
tb; 15 13 17 16 3 2
rte; E E E E E E
rtq; M M M M M M
Table IX

PROJECT B—ACTUAL VS. PREDICTED TEST EFFORT (WITHOUT
OBSERVATIONS ENTERED).

I Iz I3 Iy Is Is
Actual M 17.64 29.75 29.75 14.5 14.64 14.64
Predicted M 19.17 33.39 34.17 14.5 17.89 17.84

B. Project B

In this section, we present the results from validating the
model using data from project B. Table VIII shows the
actual data of project B as gathered from respondent B.
Respondent B has the last ten years been working at a large
telecom company, where he has been responsible for test
activities in several projects using agile methodologies.

Similar to project A, two scenarios were created in the
model for project B, i.e. ‘actual’ and ‘predicted’. Initially,
only iteration length (/) and test team size (s) values were
entered into both scenarios. However, all other remaining
variables from iteration I; to I were entered into the ‘ac-
tual” scenario. These variables include test tool quality, test
team experience, bugs found by test case, total bugs found,
rework test effort and rework test process quality. Finally,
the model was executed and test effort’s (£) probability
distribution median values were observed for both scenarios
(Table IX).

Figure 8 shows the graph of the two scenarios as generated
with the help of data given in Table IX. The graph was
generated without entering any additional observations into
the model. In Figure 8, we can see that the predicted graph
values for I, I3, I5 and I are too high, except for I as
compared to the ‘actual’ graph.

To then validate the model with the data from project B,
we only used the ‘predicted’ scenario and entered data from
I, and I, into the model (Table VIII). As we entered new
data into the model, propagation took place and parameter
distributions were updated. These distributions obviously
affected the prediction of all future iterations, as shown in
Table X.

Using Table X, a graph for both scenarios was generated
as shown in Figure 9. We can see that the ‘predicted’
scenario decreases its values and moves closer to the ‘actual’
scenario and, therefore, the prediction of I3—Ig improves as
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a result.

The prediction results for project B are more stable as
compared to the predictions of project A. The test effort
(E), in Figures 8 and 9, shows improvement in the prediction
scenario, but there is a need to validate the accuracy of the
results as will be described in the next section.

C. Results Validation

This section describes the model’s accuracy results by
performing prediction accuracy measures and statistical test.
We have used statistical software package SPSS 18.0 to
perform all statistical calculations.

In order to validate the results from executing the model,
we have performed the following prediction accuracy mea-
sures as suggested by [26-28]:

« Magnitude of Relative Error (MRE).

o Mean Magnitude of Relative Error (MMRE).

o Estimation Magnitude of Relative Error (EMRE).

e Mean of Estimation Magnitude of Relative Error

(MEMRE).

MRE is a normalized measure of discrepancy between
actual and predicted values, it provides the basis for MMRE

Table X
PROJECT B—ACTUAL VS. PREDICTED TEST EFFORT (WITH
OBSERVATIONS ENTERED FOR [ & I2).

I Iz I3 Iy I5 I
Actual M | 17.64 2975 2975 145 1464 1464
Predicted M | 17.64 2975  30.78 145 16.6 16.56

Table XI
PREDICTION ACCURACY MEASURES FOR PROJECTS A.

o Eyi MRE; EMRE;
I 14.41 144 0.000 0.000
I 12.19 12.19 0.000 0.000
I3 10.42 10.42 0.000 0.000
1 10.42 10.81 0.037 0.036
I5 8.79 11.05 0.257 0.205
I 9.81 11.21 0.143 0.125
MMRE=0.073 MEMRE=0.061
Table XII

PREDICTION ACCURACY MEASURES FOR PROJECT B.

Eai Epi MRE; EMRE;
I 17.64 17.64 0.0000 0.0000
I 29.75 29.75 0.0000 0.0000
I3 29.75 30.78 0.0346 0.0335
Iy 14.5 14.5 0.0000 0.0000
Is 14.64 16.6 0.1339 0.1181
Is 14.64 16.56 0.1311 0.1159

MMRE=0.2996 MEMRE-=0.0446

calculations, and it can be defined as: MRE = %;E”‘

Where E,; represents actual and E,; represents the pre-
dicted effort for the ¢th iteration. In our particular case,
we are interested in the deviation in relation to the pre-
dicted values not to the actual values. Kitchenham et al.
[28] suggest the use of MEMRE, where absolute residuals
(|Eqi— Ep;|) are divided by estimate (E,;). MEMRE is based
on EMRE and it can be formulated as: EMRE = M
The mean of EMRE can then be formulated as: MMRE =
13T MRE,

With the help of above definitions and measures, we have
calculated MRE, MMRE, EMRE and MEMRE for projects
A and B.

1) Prediction Accuracy Measurements: In order to check
the prediction accuracy for project A (Table VII and Fig-
ure 7) and B (Table X and Figure 9) the MEMRE values
were calculated. The results are shown in Tables XI and XII.

It is suggested in literature that MEMRE < 0.25 is
an indicator of good prediction models [26,28]. Table XII
shows that MEMRE = 0.0446 (i.e. much less than 0.25).
Hence, we can claim that the predicted test effort (E)
results for projects A and B seem to be fairly accurate.
Nevertheless, we have also performed a statistical test to
further validate the predicted test effort (£) results.

2) Normality Test: This section provides details on nor-
mality test performed on projects A and B datasets. In
this paper we have used the Shapiro-Wilk normality tests,
descriptive statistics, histograms and box plots to investigate
if the data is normally distributed or not. All normality tests
were performed on project A and B datasets separately.

In Table XIII, we can see that the significant value for
project A is 0.476 which is greater than 0.01 (level of
significance). Therefore the actual data is not normalized.
The same applies to project B (0.011).



Table XIII
SHAPIRO-WILK TEST FOR PROJECTS A AND B.

Project A Project B
Statistic df  Sig. Statistic df  Sig.
Actual data | 916 6 476 | 723 6 011
Predicted data | .825 6 097 | 768 6 .030

N

RN

Frequency

10 it 20 2 30 )
Actual Predicted

Figure 10. Project A—Histogram and boxplot of predictions.

Further, the significance values for the projects predicted
values (0.097 and 0.030 respectively) are also greater than
0.01, providing indications that the predicted data, for both
projects, is non-normal. Thus, in general, project A and B
datasets are not fully normalized. Histograms and box plots
also indicate similar results (Figures 10 and 11).

3) Significance Testing: The main objective of hypothesis
testing is to see if it is possible to reject a null hypothesis
with high significance. We observed that project A’s data
was not normally distributed and, hence, we opted for a
non-parametric test; in this case the Wilcoxon signed ranks
test.

We defined the null hypothesis to be the difference (in
median) between actual and predicted not equaling 0. The
alternate hypothesis, then, is the median of differences be-
tween actual and predicted equaling 0. The null and alternate
hypothesis can also be formulated more formally as:

Hy : Median.; — Mediany; # 0

Hy : Mediang — Mediany; = 0

After applying the Wilcoxon signed ranks test, we com-
puted p-values for projects A and B (asymptotic signifi-
cance, 2-tailed) equaling to 0.109 in both cases. We have
used 0.01 as level of significance, since the p-value (0.109) is
greater than 0.01, therefore we can reject the null hypothesis.

Further, the results confirmed that there is no significant
difference between the actual and predicted test effort (£)
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=
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Figure 11. Project B—Histogram and boxplot of predictions.

values (with p = 0.01) and, thus, we can reject Hy and
accept the alternative hypothesis. Additionally, the statistical
test also confirmed that there is no significant difference
between the medians of actual and predicted graph values.

VI. CONCLUSIONS

It is important to manage iterative projects in a way
to maximize quality and minimize cost. To achieve this,
accurate project estimates are of high importance. However,
it is challenging to predict the amount of effort required to
perform test activities in an iterative development. Therefore,
to overcome such a challenge we present here one alternative
model.

This paper’s main contribution was to introduce and
validate a dynamic Bayesian network for predicting test
effort in iterative software development. Predicting test effort
enables the test manager to plan and control the test activities
that involve test team, test tools, etc. Thus, delayed test
activities and schedule overrun can be avoided.

The results, from using the model, were validated in
several ways:

First, the model was evaluated by considering parameter
learning and initial validation. The results showed that the
model’s parameters learn from prior iterations and the model
is able to make predictions for coming iterations.

Second, the model was validated by incorporating data
from two industry projects. To evaluate the model’s predic-
tions, two scenarios were constructed (actual and predicted).
In the case of project A, initially data from two iterations
were entered into the model and test effort prediction results
were observed. When additional iteration data was used, the
model learned quickly and the prediction results were more
accurate and improved considerably. In the case of project B,
two iteration data sets were used. The results show that the
model performed well, and predictions were more accurate
compared to the ‘actual’ scenario for all future iterations.

Finally, the results of the industrial model validation
were verified through prediction accuracy measures (MRE
and MMRE) and statistical tests. The prediction accuracy
measurements indicate that the prediction results for both
projects (A and B) are very good indeed. Moreover, a
statistical test was performed using Wilcoxon signed rank
test. The results confirmed that there was no significant
difference between the medians of ‘actual’ and ‘predicted’
values for the test effort. Thus, we recommend using the
proposed model to predict test effort in iterative projects.

VII. FUTURE WORK

Specific agile practices can be introduced into the pro-
posed model such as SCRUM, XP, TDD, etc. Model behav-
ior and prediction accuracy can also be further evaluated by
implementing the model in a currently ongoing project in
industry, i.e. performing a dynamic validation as suggested
by [29]. In this way, managers can incorporate data from real



projects into the model and evaluate prediction results which
could affect their possibility to manage a project efficiently.
Further, the results of the model can also be validated
by more data from different kind of industrial projects.
Moreover, similar kinds of models, for predicting effort,
can also be constructed for each phase of the software
development life cycle, e.g. requirements and design.
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