
A Unified Model for Server Usage and Operational
Costs Based on User Profiles: An Industrial

Evaluation
Johannes Pelto-Piri

Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

Email: johannes.peltopiri@gmail.com

Peter Molin
Malvacom AB

Soft Center Fridhemsvägen 8
SE-372 25 Ronneby, Sweden

Email: peter.molin@malvacom.com

Richard Torkar
Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

Email: richard.torkar@gmail.com

Abstract—Capacity planning is essential for providing good
quality of service, for that reason we need to be able to predict the
usage that the applications will impose on our servers. This paper
presents a unified model that can predict the usage, hardware
requirements and, ultimately, the operational costs. The goal of
this study is to present a model for capacity planning. The model
presented is developed and evaluated within the industry. The
evaluation is used to analyze the possibilities of the proposed
model. The models have been evaluated within a company
using historical data that originates from production software.
The evaluation was done by running the model against three
applications and mapping the result to a selection of Amazon
EC2 cloud instances. We then provided the same data to five
developers and asked them which instance they would have
chosen for the applications. Two of the developers suggested the
same instance as the model, the second smallest on the scale. The
remaining three developers chose the instance one step above the
model’s recommendation. The evaluation showed that the model
is able to produce estimations that are comparable to expert
opinions. The unified model in this paper can be used as a tool
to estimate the usage, hardware requirements and the final cost
of the servers. The model is easy to setup within a spreadsheet
and contains parameters that are easy to obtain from access logs
and various logging tools.

I. INTRODUCTION

Mobile applications have gained a high market penetra-
tion [1] that is continuously growing. That, in combination
with the rise of cloud computing, makes it easier than ever
for small companies and independent developers to reach out
to a large user population. For mobile applications it is more
and more common to utilize context aware and multimedia
services, which require more computational resources than
their predecessors [2]. As cloud computing is expensive for
applications with a heavy load and large data transfers [3], [4],
small companies and independent developers need be able to
make informed decisions about which infrastructure to use in
order to provide cost-effective Quality of Service (QoS).

This study has been conducted at Malvacom AB, a growing
startup in Sweden that develops a data synchronization service
called mAppBridge. The goal of this study is to investigate
how users and applications can be modeled and then derive

the server usage for mobile applications and, consequently, set
requirements for the infrastructure.

Capacity planning is the process in which we determine
the capacity needed for our services in order to provide QoS.
Literature has proposed many methods [5], [6], [7], [8], [9] for
this task. Menascé and Almeida describes capacity planning
as a series of steps where we identify the workload, forecast
the performance and then do a cost analysis [5], in which
it us up to us to implement and calibrate a workload and
a performance model. However, Gunther [10] discusses the
need for a simple to use capacity planning framework, arguing
that the frameworks currently used are too complex. In this
study we aim to create a unified model that can be easily
implemented to provide an overview of applications’ hardware
requirements and final costs. Thus, the main focus of our study,
and hence also for this paper are:

• Present a unified model that can be used to receive an
initial estimate about the hardware requirements needed
to sustain a certain size of user population (Section II).

• Show that the unified model is easy to calibrate and
capable of modeling server usage, hardware requirements
and costs (Section III).

II. A UNIFIED MODEL

To be able to derive the cost for the applications, we will
first model both the application and its users, and derive the
traffic from those two entities. Secondly, we will also model
the software’s hardware requirement for that traffic. Finally,
once we have the hardware requirements we will derive the
operational costs.

We have created a unified model for this. We have cre-
ated a User Model that models a user’s profile, i.e. their
availability. The User Model is then used by the Application
Model that models the load imposed on the servers. Next,
we use a Software Model that models how much hardware
that the software will require under the load derived from the
Application Model. The Hardware Model is then, in its turn,
used to model the cost of the hardware requirements generated
by the Software Model. An overview of the models can be seen

User Model

Application
Model

Software
Model

Hardware
Model

User Profile

Application
Profile

Hardware
Requirements

Operating
Cost

Online
Probability

Application
Charac-
teristics

Request costs

Hardware
Cost

Fig. 1. Model overview.

in Fig. 1. (The boxes to the left represent the parameters to
the model while the boxes on the right represents the outputs
from the models.)

A. User Model

The user model consists of one parameter P that contains
24 values; each value represents an hour t of any given day i.e.
T = {t1, t2, . . . , t23, t24}, and describes the probability that a
user will be online during t. The P parameter will later be
used as an input to the Application Model.

Pt = {P1, P2, . . . , P23, P24}

B. Application Model

The Application Model describes how many users the ap-
plication has. It uses the User Model’s probability function to
determine the number of users online at a given moment. This
is later used to derive the maximum concurrent users at a given
hour and the total requests for one day. The Application Model
takes the following parameters for modeling the application:

• Data Pattern (DPt) The data activity for the hour t.
• User Population (Upop) The user population of the

application.
The DP parameter contains a vector of decimals that

describes the usage profile for the application that we are

modeling, DP = {DP1, DP2, . . . , DP23, DP24}. Where 1
means that there is always something new to fetch from the
server. This is used to model applications that rely heavily
on push notifications, in which the server is responsible for
initiating the communication between the server and the client.
For example, an application that sends out four updates per
hour is likely to have more traffic than an application that only
sends out two. The Upop parameter is a natural number that
represents the number of users for our application. The output
of the model is in the form of a vector R that contains 24
elements, one element for each hour that describes the number
of requests in that hour. The equation for each element in the
vector is described in (1).

Rt = Upop ×DPt × Pt (1)

Rmax = max(Rt) (2)

Rsum = sum(Rt) (3)

Where Rsum (described in (3)) is the total number of
predicted requests for one day and Rmax (described in (2))
will be the maximum load that the servers will be expected to
handle, hence the maximum concurrent users at any time in
the system is not expected to exceed Rmax.

C. Software Model

The Software Model models the amount of hardware re-
sources that will be used by the application and its users. The
Software Model requires the following parameters:

• Request Size (Rsize): The average size of each request
in bytes.

• Request Cost (Rcost): The cost of one request for the
CPU in megahertz (MHz).

• User Size (Usize): The size required per user.
As well as these parameters the Software Model also uses

Upop and R from the Application Model in order to calculate
the requirements.

In short, the model needs to calculate the following require-
ments: CPU, storage, and bandwidth. We need to provide a
CPU measurement strong enough for dealing with our peak
loads. The equation for the CPU requirement can be found in
(4).

The bandwidth requirement, on the other hand, is divided
into two different sub-requirements: a) We need to derive the
bandwidth that is needed to support the traffic peaks and, b) we
want to know the daily load to know how much data we will
handle per day. For the bandwidth required to we use Rmax

in (5) and for the total traffic per day we use Rsum in (6).
The storage requirement can be found in (7).

CPUrequirement = Rmax ×Rcost (4)

Bandwidthpeak = Rmax ×Rsize (5)

Bandwidthdaily = Rsize ×Rsum (6)

Storagerequirement = Upop × Usize (7)

The models output are described in the formulas above.
CPUrequirement is defined in MHz, while outputs that are
dealing with size (bytes) are defined in the same units as Rsize

and Usize. Thus defining the parameters in MB will yield the
requirements in MB. Keep in mind that the Hardware Model
uses GB as inputs, so by defining the size in MB the output
will have to be converted to GB in a later stage.

D. Hardware Model

The main function of the Hardware Model is to calculate the
cost of the hardware requirements derived from the Software
Model. It calculates the cost for a one month period. The
Hardware Model uses all but the bandwidthpeak output from
the Software Model as inputs. The Hardware Model uses the
following parameters:

• CPU Cost : (CCPU) The cost for the one MHz of CPU.
• Storage Cost : (Cstorage) The cost of storing GB in the

servers per month.
• Bandwidth Cost : (Cbandwidth) The cost of using GB of

bandwidth per month.

The Hardware Model has the following outputs. The cost
of fulfilling the CPU requirement (8), the network cost per
month (9) and the storage cost (10).

CPUcost = CCPU ×RCPU (8)

Bandwidthcost = Cbandwidth × bandwidthdaily × 30 (9)

Storagecost = Cstorage × Storagerequirement (10)

Equation (8) is designed to derive the cost for the cost-
performance of the modeled application on the given hardware.
For applications hosted at Infrastructure as a Service provider
(IaaS providers) such as Amazon or Rackspace we also pay
for the bandwidth and storage of our applications. For the
bandwidth cost described in (9) we start with calculating the
daily cost and then converting it to a monthly basis. For the
storage cost (described in (10)) it is common to charge a
certain amount per GB for each month, hence we do not
convert it to a monthly basis. We simply calculate the cost
based on how many GB that will be required and the cost for
those.

TABLE I
THE APPLICATIONS INCLUDED IN THE VALIDATION.

Application Upop Rsize

1 15140 351839
2 1334 2210956
3 599 676276

III. EVALUATION

This section contains an evaluation of the models. The
evaluation was conducted in Malvacom AB; the parameters
were estimated using historical data. The validation was done
by modeling three applications that are currently in production.
The selection of the applications was done by looking at the
user population for the applications. We wanted to compare
one small application, one medium-sized and one large from
the available dataset in order to compare how the attributes
such as the user population and the users availability impacts
the actual cost. The selected applications can be seen in
Table I. Application 1 is an application used for walking and
social interactions while Application 2 and 3 is are social
networking applications. The results were then analyzed and
compared against developer opinions to see how the model
performs compares against expert opinion.

In the first step of the evaluation we describe how we
estimated the parameters. During the estimation we had access
to data that allowed us to estimate the user’s availability and
various attributes about the requests such as request size. For
the last step, when looking at the cost for deploying, we
chose Amazon EC2 due their clear documentation regarding
the pricing (obviously any other provider can be used as long
as they provide clear data regarding pricing).

A. Parameter Estimation

For the parameter P in the User Model we summarized the
traffic for mAppBridge, we grouped each request per hour and
took the average number of requests based on the number of
days we had collected traffic for and the average number of
unique users per day. We chose to treat all requests as a virtual
user, which results in 100% user activity when the number
of requests was equal to the total population. Our extracted
user pattern is described in the matrix below. The population
and the average request size for each of the applications are
described in Table I.

P =

0, 113 0, 091 0, 087 0, 135 0, 260 0, 383
0, 530 0, 613 0, 626 0, 652 0, 660 0, 675
0, 679 0, 711 0, 695 0, 651 0, 624 0, 658
0, 645 0, 655 0, 597 0, 439 0, 266 0, 165

Unfortunately, we did not have any good source regarding

the data activity for the application so we assume that there
were always something new for the user to fetch and, hence,
we set the activity to 100% for each hour, i.e. DP = {t1 =
1, t2 = 1, . . . , t24 = 1}.

TABLE II
THE PARAMETERS FOR THE HARDWARE MODEL.

Parameter: CCPU .CStorage.CBandwidth.
Cost $0.051. $0.383. $0.01.

For the request cost (Rcost) we have used (11). Unfortu-
nately we did not have access to any historical data regarding
the CPU utilization, therefore we made an assumption. We
assume that we are currently maintaining one server with a
single CPU with a processor speed on 2.2 GHz with an average
load on 50% for a benchmark with 30,000 requests. We
assume that the requests that the server is currently receiving
is equivalent in terms of CPU utilization as the request from
application we are trying to model. The estimation of the
request cost parameter can be found in (12).

Rcost =
Processor speed (MHz)× processor utilization

Observed Requests
(11)

Rcost =
22000× 0.5

30000
= 0.04 MHz (12)

For the users we assume that our application will take up 5
megabytes of space per user in personal data, i.e. Usize = 5MB

For the Hardware Model we must estimate the cost for the
processor, bandwidth and storage. We choose to model the
cost for a single small instance on Amazon EC2. At the time
of writing a small instance on Amazon with one EC2 unit,
which is equivalent to 1.2 gigahertz and includes 160 gigabytes
of storage, has a monthly cost of $61.2. Traffic that leaves
amazon costs $0.01 per gigabyte. The cost for the storage
and the CPU is done by dividing the processor speed and the
storage with the cost. The parameters can be seen in Table II.

B. Results

The first step is to calculate the number of requests for each
of the applications. This is done with (1). Table III shows the
summary of the requests for each of the applications while the
full request pattern for each of the application can be found
in the below matrices.

R1 =

1704 1376 1312 2045 3941 5793
8018 9283 9471 9866 9997 10219
10275 10767 10524 9861 9441 9963
9763 9913 9032 6645 4023 2493

R2 =

150 121 116 180 347 510
706 818 834 869 881 900
905 949 927 869 832 878
860 873 796 585 354 220

R3 =

67 54 52 81 156 229
317 367 375 390 396 404
407 426 416 390 374 394
386 392 357 263 159 99

TABLE III
THE PREDICTED REQUEST PEAK AND DAILY LOAD FOR EACH OF THE

APPLICATIONS.

Application Rsum Rmax

1 174,018 10,767
2 15,333 949
3 6,885 426

Total 196,236 12,141

When we have the request pattern for each of the applica-
tions we can move on and estimate the hardware requirements
with the Software Model. The hardware requirements for the
applications can be seen in Table IV. The equations used to
calculate the requirements are described in Section II-C. The
requirements that were in bytes have been converted to GB
for convenience.

The last step of the execution is to derive the final cost for
the hardware. We do this for each of the applications. The
results can be found in Table V.

C. Analysis

When we analyze the results it is important to keep in mind
which service provider we are using. In this case we have
mapped the results to Amazon EC2 instances. By looking at
the requirements (shown in Table IV) we can see that the
requirements fit a small instance. We asked five developers
to choose an instance for the applications based on the data
given in Section III-A. Two of the developers thought that
a small instance would suffice while three developers would
have chosen a larger instance. This shows that the output of the
model falls within the range of the developers’ suggestions.

As can be seen, each application is modeled separately; this
has resulted in different hardware requirements for each of
the applications. Meaning, that in theory, this output can be
used to distribute the applications across a set of servers so
that we are utilizing each server in an optimal way, possibly
leading to fewer resources allocated as we are keeping waste
to a minimum. Also, by modeling existing applications on
existing servers we can use the model to determine if we can
fit a specified application to it, as we were predicting the CPU
utilization of each application. This model also allows us to
quickly see how the cost and hardware requirements would
change if we change our service provider, as we can use one
set of Software and Hardware Models for different service
providers to compare the cost between them.

It should be noted that in order to gain more accurate
results, more data is needed to calibrate the parameters. The
parameters for these models are quite trivial in nature and
there exists a wide array of software logging tools that can be
installed to gather all the necessary data.

IV. VALIDITY THREATS

The goal of the evaluation was to see if the model is suitable
for usage. We evaluated this by looking at how the model’s
final prediction was positioned in comparison with experts. We
only compared against five experts, and we do not know how

TABLE IV
THE ESTIMATED HARDWARE REQUIREMENTS FOR EACH OF THE APPLICATIONS.

Application CPUrequirement (MHz) Bandwidthpeak Bandwidthdaily Storagerequirement

1 394.779 3.528 57.022 75.70
2 34.784 1.953 31.572 6.67
3 15.619 0.268 4.339 2.995

Total 445.183 5.750 92.933 85.365

TABLE V
THE FINAL COST FOR DEPLOYING THE APPLICATIONS.

Final Cost
Application CPUcost ($) Bandwidthcost ($) Storagecost ($) Total

1 20.134 17.106 28.955 66.195
2 1.774 9.427 2.551 13.797
3 0.979 1.302 1.146 3.244

Total ($) 22.704 27.880 32.652 83.236

the comparison would have fared with more people. Also, the
evaluation was targeted against mobile applications, furthering
limiting the comparison.

The data at our disposal was able to give us the total number
of unique users for the application, the user’s activity pattern
and the average size for each request. We were, however,
unable to use the data to estimate parameters such as the user
size (US) and various attributes in the Software Model such
as the request cost.

V. LIMITATIONS

There are several limitations with this model. As for now the
model does not help us to predict the QoS directly, as it simply
models the hardware requirements and their cost. Also, the
server’s storage and network costs are not that accurate when
it comes to the final cost since many service providers use
predefined templates for the hardware where a certain amount
of storage is already included in the price.

The requirements modeled by the Hardware Model does
not take any kind of growth into consideration. This is a
limitation when looking at the storage requirement. If we
were modeling a data intensive application, in which the users
are often uploading/downloading new content the storage will
grow and hence the required cost for it.

In order to estimate the parameters in the best possible
manner access to historical data is required. Also, different
applications may target different users and have different user
profiles as well, so in order for the historical data to be useful
it must contain data from a similar application type.

The CPU requirement are modeled after Rmax, the max-
imum numbers of users expected within one hour. This ap-
proach is a bit crude, a more realistic approach would be
to model the arrival rate within each hour using a suitable
probability distribution and then derive and use the mean or
maximum arrival rate as Rmax.

VI. CONCLUSIONS

In this study we have presented a unified model that can
be used to predict the workload, hardware requirements and
operational costs for a server infrastructure. The models are

designed with simplicity in mind and they are easily imple-
mented in a spreadsheet making the results easy to share.

Given a simple calibration of the model, the results are
comparable to expert opinions. The result can also be used
to compare the cost of service providers, and distribute ap-
plications based on their hardware requirements. In the end,
these models can be used to help us make a more educated
guess when we are performing capacity planning in order to
assure cost-effective QoS.

We have conducted a static evaluation of the model. The
evaluation has been focused on determining what the impact
the model can have. Our future work will be focused on:
a) Addressing some of the issues as described in Section V
and also b) investigate the possibilities of adding an easy to use
QoS model and finally c) validate the models from a business
perspective

REFERENCES

[1] M. Meeker, J. Dawson, J. Lu, B. Lu, R. Ji, S. Devitt, S. Flannery,
N. Delfas, and M. Schneider, “The Mobile Internet Report,” 2009.

[2] C. Canali, M. Colajanni, and R. Lancellotti, “Performance Evolution of
Mobile Web-Based Services,” IEEE Internet Computing, vol. 13, no. 2,
pp. 60–68, 2009.

[3] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam, “To move or not to
move: The economics of cloud computing,” in Third USENIX Workshop
on Hot Topics in Cloud Computing (HOTCLOUD 2011), 2011, pp. 1–5.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above
the Clouds : A Berkeley View of Cloud Computing Cloud Computing,”
EECS Department, University of California, Berkeley, Tech. Rep., 2009.

[5] D. A. Menascé and V. A. F. Almeida, Capacity Planning for Web
Services: metrics, models and methods. Prentice Hall, Upper Saddle
River, 2001.

[6] M. Koorsse, L. Cowley, and A. Calitz, “Network Application Per-
formance Modelling,” in Southern African Networks and Applications
Conference, vol. 27, no. 0, 2004.

[7] R. Lopes, F. Brasileiro, and P. D. Maciel, “Business-driven capacity
planning of a cloud-based it infrastructure for the execution of Web
applications,” 2010 IEEE International Symposium on Parallel & Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–8,
2010.

[8] R. Garg, H. Saran, and R. Randhawa, “A SLA framework for QoS
provisioning and dynamic capacity allocation,” in Quality of Service,
2002. Tenth IEEE Internatinoal Workshop on, 2002, pp. 129–137.

[9] J. Allspaw, The Art of Capacity Planning: Scaling Web Resources.
O’Reilly Media,, 2008.

[10] N. Gunther, “Hit-and-run tactics enable guerrilla capacity planning,” IT
professional, vol. 4, no. 4, pp. 40–46, 2002.

