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Abstract

Search-based software testing (SBST) has shown a po-
tential to decrease cost and increase quality of testing-
related software development activities. Research in SBST
has so far mainly focused on the search for isolated tests
that are optimal according to a fitness function that guides
the search. In this paper we make the case for fitness func-
tions that measure test fitness in relation to existing or pre-
viously found tests; a test is good if it is diverse from other
tests. We present a model for test variability and propose
the use of a theoretically optimal diversity metric at vari-
ation points in the model. We then describe how to apply
a practically useful approximation to the theoretically opti-
mal metric. The metric is simple and powerful and can be
adapted to a multitude of different test diversity measure-
ment scenarios. We present initial results from an experi-
ment to compare how similar to human subjects, the metric
can cluster a set of test cases. To carry out the experiment
we have extended an existing framework for test automation
in an object-oriented, dynamic programming language.

1. Introduction

Developing good tests for software systems is expensive

and much effort in recent years has gone into methods to

automate parts of this process. Search-based software test-

ing techniques have surfaced as one of the more promising

solutions [13, 16]. By applying local or population-based

search algorithms to search for test data and/or test cases

we can, potentially, both decrease the human effort needed

for developing the tests as well as increase the effectiveness

of the tests themselves.

Several previous studies have shown the potential of this

approach [12, 21, 22]. The fitness functions used to di-

rect the search is often based on some coverage criteria,

like statement or branch coverage, even though other ap-

proaches have been reported [3, 14]. However, only a few

studies have used relative fitness functions that compares

newly found tests to the ones previously in the test set, to

optimize the test set as a whole [2]. This is unfortunate

since an optimal set of tests is what is ultimately needed.

A fundamental fact of software testing is that tests cannot

show the absence of faults just their presence [11]. How-

ever, in practice test sets are not only used to uncover faults,

they are also used in arguments for the quality of the soft-

ware. A key to making such dependability arguments is that

we have test cases that humans judge as being cognitively

dissimilar. It is not likely that including many tests that are

regarded as the same or very similar would strengthen such

arguments. To be able to search for such cognitively dif-

ferent test cases we need fitness functions that can measure

them. Existing proposals to measure software and test dif-

ferences in the literature are either limited in which types of

situations they can be applied, disregard some important as-

pect of the differences to be measured and/or are very com-

plex [5, 9, 19].

From a practical point of view previous studies in SBST

have also been lacking in that they do not integrate with

existing testing and specification frameworks. This has hin-

dered more wide-spread use. For real-world use it is likely

that software developers and testers will want to mix differ-

ent types of tests; some handwritten and some found via a

search. Systems supporting this will be easier to learn and

use if the different parts are well integrated with each other

to support different types of test creation within the same

framework. With this in mind we have extended an exist-

ing, behavior-driven specification framework to be able to

trace tests and calculate test diversities.

In this paper we investigate test diversity metrics and

evaluate their potential in ranking tests based on cognitive

similarity. In particular, the paper:

1. Presents a model for test variability with points of vari-
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ations, that gives a framework for specifying a family

of different test diversity metrics.

2. Proposes the use of a theoretically optimal diversity

metric for testing, and a practically, useful approxima-

tion of it, for test diversity calculations.

3. Briefly describes our extension to a testing framework

to collect traces for diversity calculations.

4. Presents results from an initial experiment to evaluate

one such diversity metric.

The rest of this paper if structured as follows. Sec-

tion 2 introduces a test variability model, and Section 3 de-

scribes a universal diversity metric that can be applied to

testing. Based on the model and the metric, Section 4 pro-

poses a practically useful test diversity metric. Sections 5– 6

present an initial experiment to compare one particular met-

ric for clustering to humans. Section 7 discusses the results

and Section 8 presents related work. Section 9 concludes

the paper.

2. Test Variability Model

Figure 1 shows a simple model of running a software

test. There are five main steps when executing the software

under test (SUT) in order to test it: test Setup, Invocation,

Execution, Outcome and Evaluation. In the figure the rect-

angular nodes refer to these five phases while the eleven

elliptical nodes are variation points, i.e. aspects on which

two tests might differ.

Test setup is the source code used to setup the SUT for

the test. This involves both general setup (SG), which is

common to all (or many) different test executions, and setup

code specific to the current test (SS). We have chosen not to

consider the state of the system as part of the input to the

test; this choice increases the level of detail in the model

and allows for finer control when measuring test difference.

Common to both types of setup is that it only sets up the

SUT, it is not concerned with generating or creating the test

data to be used in the invocation of the SUT. Instead, cre-

ating the arguments (IA) is part of invocation and distin-

guished from the actual call of the SUT (IC). In test exe-

cution we can distinguish several aspects in which tests can

differ: in how the flow of control (XC) is transferred and

in how state changes happens (XS). The fourth step in our

model is the test outcome where we consider both SUT state

changes (OS) and the actual return values (OR) as variation

points.

In addition to test execution, tests can differ in how the

behavior of the SUT is evaluated. This part of the model

can involve evaluating both the outcome (OE) or aspects

of the execution (EE) such as e.g. performance. Different

testers might have different views on which properties of

the behavior should be checked, and not all of them might

be complete, in the sense of fully describing the desired be-

havior. We thus avoid any notion of an oracle, and instead

note that tests might differ in which properties are checked

for and how in the evaluation of a test case.

Apart from the ten variation points above, tests can also

differ in what are the goals of running the test (G). We in-

clude this variation point since test cases can be used in ar-

guments that the SUT has a certain quality level. Having

clear goals that fit with the rest of the tests in a set is impor-

tant for this type of arguments. For example, two different

methods for creating a test, e.g. boundary value analysis and

mutation testing, might lead to the exact same test, but their

goals with the test might be different. Even though this type

of variation might be rarely documented or used in practice

we include it for completeness. Also, in place for the actual

goals we might find other types of documentation relevant

for the test, such as for example comments in the test code

or in test plans.

In the following we refer to our model as the VAT model

(VAriability of Tests). It is primarily a dynamic model of

test case execution, i.e. it is the actually executed code for

a certain variation point that we focus on. Depending on

the execution model of the programming language or vir-

tual machine or how we choose to use the model static in-

formation for a variation point may also (or solely) be used.

However, below we focus on measuring distances between

information on variation points collected by tracing the test

case while it executes.

3. A Universal Test Diversity Metric

The VAT model introduced above has several points of

variation that we want to compare between different tests.

Given that we choose one or a few variation points that we

are interested in, what method should we use to calculate an

actual numerical distance value?

The solution in the literature so far has been to devise

specialized methods of calculating metrics. Bueno et al. use

an Euclidian distance between input vectors [5]. Ciupa et

al. specify a number of different factors of interests in com-

paring object invocations and then weigh them together [9].

Nikolik defines test diversity measures based on the fre-

quency of executing statements or parts of statements when

running a test [19].

The problem with these approaches is that for each new

variation point and aspect of a test we introduce or consider,

we will have to develop a specialized metric for it. As an

alternative, we propose that we look at what would be an

information-theoretically optimal diversity metric that can

be applied in several of these variation points and without

us having to adapt it for each aspect we want to measure.
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Figure 1. Execution of a software test.

This may sound like a holy grail but recent advances in in-

formation theory has produced results of this generality [6].

In the rest of this section we describe them and in the fol-

lowing sections we describe how to apply them for test di-

versity measurement.

A diversity measure calculates the distance between two

or more objects. Measuring the distance between two ob-

jects is enough; if we have a method for that we can extend

it to measure distances between sets of objects. Bennett et

al. have introduced a universal cognitive similarity distance

called Information Distance [4]:

The information distance between two binary

strings, x and y, is the length of the shortest pro-

gram that translates x to y and y to x.

This is based on the notion of Kolmogorov complexity,

K(X), which measures the informational content of a bi-

nary string x as the length of the shortest program that prints

x and then halts [15]. More specifically, it builds on the con-

ditional Kolmogorov complexity, K(X|Y ), i.e. the length

of the shortest program that can print X given Y as input.

Information distance is universal since it has been proven

to be smaller than any other admissible similarity measure,

up to an additive term. This means that information distance

is as good as any other thinkable similarity measure. In the

words of Bennet:

[information distance] discovers all effective fea-

ture similarities or cognitive similarities between

two objects; it is the universal similarity metric.

For search-based testing, when we want to find tests that

are cognitively different from the ones we have already

found, this is a very important result. As long as we de-

vise some way to dump information about a (part of a) test,

we can dump this information for two different tests and ap-

ply the information distance to get their distance. Thus, we

can for example use this as a fitness function in search and

optimization algorithms to find better tests.

The generality of information distance, is the reason for

why we allowed ourselves to include such a fuzzy element

of the VAT model as the test goals. As long as we can gener-

ate two strings describing the test goals of two different tests

we can measure their similarity (or diversity). We could, for

example, use the text stating the different goals as described

by the tester or even the customer1. Formally we define:

Definition 1 A complete VAT trace of a test is a string with
all the information about the actual execution of a test for
all the variation points in the VAT model.

We propose to use information distance of the com-

plete VAT traces of two tests as the Universal Test Distance
(UTD). Given the generality and power of information dis-

tance, UTD should, in theory, be able to discover all cogni-

tive similarities between two test executions.

1There is an important issue of syntactic versus semantic differences

here though that needs to be evaluated. See the discussion for more details

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08) 
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:14 from IEEE Xplore.  Restrictions apply. 



Definition 2 The Universal Test Distance, denoted ΔVAT,
in the VAT model is the information distance between the
complete VAT traces of two tests.

It might not always be the case that we can dump all

information during a test execution to get a complete VAT

trace. We might only be able to get the information from

a few of the variation points. The information distance can

be applied also to such traces, so we are really proposing

a whole family of different test distances. Depending on

which information we decide to include in the traces, our

distances will measure different things. We have thus sim-

plified our problem from one of devising a distance mea-

sure that captures important differences to one of choos-

ing which information we think is important for uncovering

meaningful differences.

However, a big problem with Information Distance is

that it, like Kolmogorov complexity, is uncomputable. How

should we find the shortest program that can turn two strings

into each other? There is no method to calculate Informa-

tion Distance. In the next section we describe the Normal-

ized Compression Distance (NCD), introduced by Cilibrasi,

to approximate the Information Distance [6].

4. A Practical Test Diversity Metric

The uncomputability of the Information Distance met-

ric can be overcome by using data compressors to approxi-

mate Kolmogorov complexity. Real-world compressors like

gzip and bzip2 will not be as good compressors as the Kol-

mogorov complexity but can be used to approach it from

above [6]. In his thesis, Cilibrasi introduced the Normal-

ized Compression Distance, NCD:

NCD(x, y) =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)}
where C(x) is the length of the binary string x after com-

pression by the compressor C and C(xy) is the length of

the concatenated binary string xy after compression by the

compressor C. In practice, NCD is a non-negative num-

ber 0 <= r <= 1 + ε, where ε is small and depends on

how good an approximation of Kolmogorov complexity the

compressor (C) is. For modern compressors like gzip and

bzip2, ε is typically 0.1 and more recent compressors can

even come close to 0, i.e. being excellent approximations of

Kolmogorov complexity.

Cilibrasi et al have successfully evaluated NCD in multi-

ple areas as diverse as genomics, virology, languages, liter-

ature, music, handwritten digits, and astronomy [8]. NCD

is a practical distance metric based on theoretically sound

results. We propose to use it as a generally useful test diver-

sity metric. By dumping information about tests into linear

strings we can calculate the NCD between tests. This gives

a general test diversity metric that is applicable in a large

number of contexts. In the following we explore the usabil-

ity of the NCD as a test diversity metric in an experiment.

5. Experiment

We want to evaluate if NCD can be used as a practical

diversity metric to measure the cognitive distances between

tests. Based on the arguments about NCD and ID we have

formulated the following main hypothesis to be tested in the

experiment:

Hcog: Ordering tests based on their ΔVAT dis-

tance cannot be distinguished from how a human

would order the tests based on their ‘cognitive

similarity’.

For the metric to be useable as a stand-in for humans

we want it to find differences between tests that are cogni-

tively meaningful. If we can refute Hcog our proposed met-

ric might still be useful as a distance metric but we would

have to find other justifications for it than it being a substi-

tute for human judgement.

For an initial experiment to evaluate the potential of our

proposed metric we have used the triangle classification

problem [17]. This is almost the smallest thinkable, i.e. toy,

problem in the testing literature and education. Of course

this will not allow us to generalize to larger and more re-

alistic software systems. However, if ΔVAT does not work

for this, simple problem, it might not warrant further inves-

tigation.

Based on an extensive list of tests for the triangle classi-

fication problem we created implementations of these tests

in a specification framework for the dynamic programming

language Ruby [20]. The framework is called Bacon and is

a recent behavior-driven test/specification framework simi-

lar to the more well-known RSpec framework [18, 1]. We

have chosen Bacon since it is smaller, and thus more mal-

leable, than RSpec, allowing us to more easily extend it to

dump test traces to file while running the tests.

Our extension uses a Ruby function to hook into the pro-

gram interpreter and trace the execution of every important

event. When the trace function we have added detects a

‘line’ event indicating the execution of a new line of code

in the program executing it will save information about the

line number, the code on that line as well as information

about all the values of variables being accessed on this line

of code. This information is saved to a file for later analy-

sis. It constitutes a trace of both the code and the data values

that are accessed for each line of code. Note however, that

it is not a complete VAT trace of the test. We only trace

the invocation, execution and evaluation steps in the VAT

model and we do not save all accessible information during
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the trace. For example, we cannot follow the execution of

Ruby’s internal methods when called by the SUT.

A total of 25 different test cases for the triangle classi-

fication problem were included in the tests. There where

tests for all the four types of classifications (illegal, scalene,

isosceles and equilateral triangles) as well as invalid inputs

such as too few or too many arguments or strings instead

of numbers. We further used both small integer values as

well as very large ones (Ruby supports arbitrary-precision

integers).

All the test cases were implemented in a version of Ba-

con that we extended to save a ΔVAT trace. We ran all the

test cases, collected the traces and then used Cilibrasi’s et

al. CompLearn toolkit [7] to calculated the NCD distances

and create a quartet tree representing the hierarchical clus-

tering of the test case traces [6]. The quartet tree method is

a powerful technique to visualize the distance matrices pro-

duced by an application of NCD to a set of objects. It is a

heuristic optimization method that tries to find an unrooted

binary tree, clustering the objects so that objects with small

distances are closer in the tree than objects with high dis-

tances.

All the 25 test cases were also stripped of documenta-

tion strings, randomly ordered and labeled before they were

given to three human subjects. These subjects worked in-

dependently and were told to cluster the test cases based

on their subjective judgement of test case similarity. They

did not have access to the implementation we used when

collecting the traces. Their clustering was thus black-box,

i.e. based on the test code only.

6. Results

All three human subjects classified the test cases in a

very similar way. They used rooted non-binary trees and

divided the test cases into five main clusters based on their

output, i.e. either there was an exception because the ar-

guments were not valid or there was one of four different

triangle classifications. Only for one of these main clus-

ters did they further divide into sub-clusters. All three of

them sub-clustered the test cases with illegal triangles into

groups containing zeroes, positive or negative side lengths.

Two of them also singled out triangles that violated the tri-

angle property (‘one side cannot be longer than the sum of

the other two’). Common to all three human clusterings

was that they did not use binary trees so within sub-clusters

there were several test cases that were not fully ordered on

their similarity. This made it hard to test Hcog statistically.

Below we discuss some of the features of the clustering pro-

duced from the UTD matrix that corresponds to or differs

from the clustering done by the human subjects.

Figure 2 shows the quartet tree showing the clustering

that CompLearn calculated based on the ΔVAT distance ma-

trix calculated from the test case traces. In the picture, el-

liptical leaf nodes are the test cases and empty, intermediate

nodes, are used to show distance between test case nodes

or other intermediate nodes (representing a cluster). The

dashed edges on the rim of the figure shows the ΔVAT dis-

tances between neighboring test case nodes (or really the

traces for the test cases in the nodes). The labels of the test

case nodes briefly characterize the test case. The first posi-

tion can be either S, for short integers, L, for long integers,

or F, for floating point side lengths used in the test invo-

cation. The second position of the label indicates the out-

come of the test with E representing equilateral, I isosceles,

S scalene and X illegal or that an exception was raised. The

third position is an underscore which is then followed by a

description of the actual input arguments in the call to the

triangle classification method. Note that for some of the test

cases with long integers we could not use the full value and

used an L followed by a number to indicate a particular long

integer number. As an example of a label ‘SS 3,4,5’ is the

test case using 3, 4 and 5 as the short integer arguments and

that expects the method to classify the triangle as a scalene

triangle.

We should note that the algorithms used for producing

this figure are non-deterministic so different runs can give

slightly different trees from one and the same distance ma-

trix. We ran the CompLearn tree building command several

times to evaluate if these differences were important and

they seem not to be. Even though the actual positions on

the produced trees might differ, the relative positions, with

only a few exceptions, seems to correspond to the figure

(see Figure 2).

We can see that the method have found several groupings

that are intuitively correct, for example, test cases that are

simply permutations of the same side lengths are grouped

close to each other (see for example the group of test cases

in the lower left corner where all the scalene triangles that

are permutations of the sides 3, 4 and 5 are clustered). Clos-

est to this group is the test case with the same side lengths

given as floats. This makes sense since the implementation

of the triangle classification problem we used did not treat

floats differently from integers; they only differ in which

Ruby internal methods are executed. Since we only in-

cluded user-developed code in the trace the executed code is

the same at this level and thus the test case is grouped close

to its integer counterparts. The method has also correctly

grouped the equilateral triangle case (SE 1,1,1) closer to the

group of isosceles triangles than the scalene ones. This is

intuitive since the former share the property of having two

sides of equal length.

In the middle of the figure we can see a fairly sharp di-

vide between a majority of invalid triangle test cases in the

right part of the figure while in the left there is a major-

ity of valid triangles. One exception is ‘LX L4,L5,longer’

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:14 from IEEE Xplore.  Restrictions apply. 



Figure 2. Quartet tree clustering based on ΔVAT distances between test case traces.
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which is an illegal triangle in a group of valid triangles. This

seems counterintuitive. We studied the traces for this and its

neighboring test cases in detail and found that this happens

because the triangle sides used in these test cases are very

long numbers, and dominates the trace strings. The fact that

these test cases share long runs of integer characters seems

to overtake the differences they show in the statements exe-

cuted. However, we will need more empirical data to evalu-

ate this fully. Anyhow, the relatively large ΔVAT distances

shown, indicates that these test cases are quite distant even

though they share some structure.

Another exception in the left side of the figure is the three

invalid triangles in the upper, left corner. All these three test

cases have triangles with permutations of sides in which two

sides of the triangle have the same length as the third one,

which is illegal. Our human subjects have all clustered these

three test cases together with the other test cases with illegal

triangle side lengths. By analyzing the traces of ‘SX 3,2,1’

and ‘FS 3.0,4.0,5.0’ we can see that they differ only in the

last statement executed, i.e. the one returning the classifica-

tion. So they are similar because of our particular imple-

mentation of the triangle classification problem. With the

condition statements in a different order the traces between

these two would have been larger and thus their distances.

7. Discussion

The results indicate that applying the UTD, i.e. NCD to

measure diversity between traces in the VAT model, can be

used to cluster test cases by cognitive similarity, i.e. in a

way that is intuitive to humans. This has important impli-

cations for search-based software testing since we can then

use these metrics when trying to find tests that are more di-

verse and more meaningful to a human software developer,

thus increasing their quality and usefulness in dependability

and quality arguments.

The unintuitive exceptions in the automatically clustered

test cases could be explained by the actual choice of in-data

or by the actual implementation of the tested code. This

is a reflection of the fact that we included a majority of the

steps in the VAT model (except the outcome step, and setup,

which is not present for our chosen problem) in our traces.

Thus the metric we employ is not simply a black-box diver-

sity metric but includes also white-box elements such as the

path taken through the code and internal state during exe-

cution. This is in contrast to the human subjects that could

only do the clustering based on the inputs themselves. By

excluding information from the trace we could possibly get

a clustering that is closer to the clustering done by humans.

However, this will have to be evaluated in future research,

since for many pieces of software, like in the one we ex-

perimented with, there might not be enough information in

the input arguments to allow differentiation of the tests. If

the NCD-based metrics really breaks down when there is

only little information available, needs to be explored more

in future research.

Our VAT model is important since it allows us to create

a whole family of different NCD-based test diversity mea-

sures, depending on which steps and to what level of detail

information from a step is included in a trace. However, our

focus has not been on the model and future work can also

explore how the model can be refined and extended, and

thus imply other important and useful test diversity metrics.

It might also be possible to use NCD for search-based soft-

ware engineering studies other than testing.

A threat to our study is that the results cannot be general-

ized to larger and more realistic programs. For example, it

is not clear what would happen if the internal state contains

very complex and large data structures. Maybe they will

dwarf the relatively smaller parts of the trace that the state-

ments make up in a way similar to how our test case with

long input numbers seemed more similar than they would

intuitively have been judged to be. Such trace dominance

problems could potentially limit the usefulness of our ap-

proach for programs with complex data. On the other hand,

not only data could dominate a trace, but also the code, for

example in loops with many iterations.

The problem of trace dominance is important since it re-

lates to what it is we really want to investigate the distance

between. Human subjects may be more likely to focus on

the black-box aspects of a test than to consider the imple-

mentation important. Or maybe simplified traces of the exe-

cution might be enough, e.g. only incorporating the calls to

other methods, not the statements within them. We believe

that the UTD itself might not be the one and only solution

to measuring test distances, however by choosing different

variation points and levels of details we can get different

clusterings of tests that show different but important aspects

of how the tests differ. Such a multi-metric approach might

be the most long-term useful. Potentially it could also con-

sider calculating distances between static information about

the tests.

Another threat to our study is that the humans we used

in our study are not typical of the general (software engi-

neer) population. On this small example we do not think

this is a serious threat. However, for larger programs we

need to evaluate if different humans might differently value

test differences and thus group the associated tests.

We note that the wording of ’cognitive diversity’ might

not be well chosen since there is already such a concept in

psychology. However, we use the term in the same sense as

it is used in [4] and we think there is little risk of confusion

with the psychological term.

There are many issues that need to be further investi-

gated. For example, it is not clear how we can select which

information from the VAT model to include when applying
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UTD. There is a risc that we have shifted the problem of

calculating a test distance to one of selecting which infor-

mation to include. And without any information selection

some other part of the system searching for tests must se-

lect relevant from irrelevant information. Even though the

NCD, or in particular the NID, has theoretically interesting

properties and should be able to find all relevant differences

we need more empirical research to evaluate this in prac-

tice. Also it is unclear if differences that are relevant from a

information-theoretical standpoint is relevant for humans or

for the actual quality of the developed software. While non-

relevance for humans could be an advantage, the method

could find test differences important that humans missed,

non-relevance for software quality needs to be investigated

in detail.

Special attention in future studies should be given to the

issue of clustering humanly-written test goal specifications.

One counter-argument to using a method based on NCD

would be that words that are syntactically similar but se-

mantically different might be co-clustered. This might in-

validate the use of UTD for clustering of tests based on de-

scriptions written by humans, not only in test goal descrip-

tions but also in, for example, source code comments. There

is some evidence that this would not be the case. For exam-

ple, Cilibrasi, have clustered works of fiction and found that

they cluster in a cognitively ’natural’ way [6]. However, it

might be the case that these clusters are based on ways of

expression and choice of words etc. and not on any seman-

tic differences.

The basic premise for our paper, that tests that appear di-

verse to humans are more effective in improving confidence

in program correctness, also needs to be studied in more de-

tail. For example, in program reliability arguments based

on statistical usage testing the most heavily used modules

are the ones that are the most heavily tested. Tests for these

heavily tested modules might be more similar than tests that

execute rarely used modules. Thus, we need to better un-

derstand different levels of scale and test diversity. Even

though test diversity on module level might be important

it is not clear that this is true for the system level. It also

points to the fact that UTD-based test search is not a sil-

ver bullet; it can be but one component in a battery of test-

ing tools that we need to address pressing software quality

challenges. Investigating how it fares compared to and in

combination with other test creation approaches is thus im-

portant.

8. Related Work

Bueno also discusses different approaches to diversity-

based test set optimization and introduces structural and in-

put domain perspectives on diversity [5]. Our framework

extends this by also considering output domain diversity,

including both changes to the state and the return values.

We also emphasize that the input to the software under test

is not simply the data used in the invocation but also any

test code and data used in setting it up for the test. Further-

more our method and evaluation is more general since we

consider complex, and not only numerical, test data. The

metric we propose to use, as a general solution for diversity

metrics, can handle any type of data and structure, as long

as it is dumped to a linear string.

Ciupa et al. introduces a measure of object distance

by defining an elementary distance between atomic object

types (strings, numbers etc.) and then basing the object dis-

tance on its type and values of its fields and by recursively

applying this on sub-objects in the fields [9]. It is based

on the values and not on the structure of how these values

are connected [9]. This is in contrast to our NCD-based

test metrics, which can take both structure and values into

account, if we can find a way to represent them both in a

linear string.

Several test diversity measures for control and data flow

coverage were defined by Nikolik [19]. They are all based

on tracing and collecting information on how many times

each branch in the flow graph is executed when running

a test. The diversity is then calculated by a formula that

relates how skewed the distribution over the branches is

compared to a uniform distribution. Thus they measure

how focused the test is on a specific part of the SUT. Our

proposed metric is related to this since the statements exe-

cuted in the chosen branch would all be listed in our traces,

and listed multiple times if the branch is executed multi-

ple times. Thus, in an indirect way, similar information as

the one collected by Nikolik would be available in our trace.

However, the actual calculations involved are quite different

and our proposed metrics is motivated by the theory of In-

formation Distance. Furthermore, our traces contain much

other information that is not collected by Nikolik.

Baudry et al. have introduced a relative fitness mea-

sure [2] where the fitness of one test case is related to that of

a set of other test cases. However, the base fitness functions

used to calculate the relative fitness judges the fitness of a

whole set of test cases together while the metrics we pro-

pose in this paper applies to pairs of individual test cases.

Our approach has similarities to the clustering of execu-

tion profiles that Dickinson and Leon used to select a subset

of a set of potential test cases to evaluate for conformance

to requirements [10]. However, their dissimilarity metrics

was based on euclidian distance and the execution profiles

were based on caller/callee counts. It is not clear how their

method could be expanded to include more complex profile

information like the one supported by NCD (any informa-

tion).
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9. Conclusion

We have proposed a family of test diversity metrics based

on a theoretically optimal, even universal, cognitive simi-

larity measure. The metrics are easy to implement and are

flexible in the sense that they can adapt to the information

about the tests that is chosen or is available. They require

little thought on the part of its users.

In an initial experiment we evaluated one of these met-

rics and compared it to three human subjects on the task of

clustering 25 test cases for the triangle classification prob-

lem. The metric found many of the same and intuitive clus-

terings that were uncovered by the humans. There were a

few exceptions which could be explained by the fact that

the automated clustering was based on not only the black-

box but white-box information. The human subjects only

clustered the test cases based on black-box information.

The proposed metrics can be used in search-based soft-

ware testing to search for tests that are cognitively different

from each other. They might also be more generally use-

ful in search-based as well as normal software engineering.

However, based on this study it is not clear if the proposed

metrics will scale to real-world software systems. More

evaluation is needed and should be the topic of future re-

search.
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From Genetic to Bacteriological Algorithms for Mutation-

Based Testing. Software Testing, Verification & Reliability,

15(2):73–96, 2005.

[4] C. H. Bennett, P. Gács, M. Li, P. M. B. Vitányi, and W. H.
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