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Overcoming the Equivalent Mutant Problem:
A Systematic Literature Review and a Comparative

Experiment of Second Order Mutation
Lech Madeyski, Member, IEEE, Wojciech Orzeszyna, Richard Torkar, Member, IEEE, and Mariusz Józala

Abstract—Context. The equivalent mutant problem (EMP) is one of the crucial problems in mutation testing widely studied
over decades.
Objectives. The objectives are: to present a systematic literature review (SLR) in the field of EMP; to identify, classify and
improve the existing, or implement new, methods which try to overcome EMP and evaluate them.
Method. We performed SLR based on the search of digital libraries. We implemented four second order mutation (SOM)
strategies, in addition to first order mutation (FOM), and compared them from different perspectives.
Results. Our SLR identified 17 relevant techniques (in 22 articles) and three categories of techniques: detecting (DEM);
suggesting (SEM); and avoiding equivalent mutant generation (AEMG). The experiment indicated that SOM in general and
JudyDiffOp strategy in particular provide the best results in the following areas: total number of mutants generated; the
association between the type of mutation strategy and whether the generated mutants were equivalent or not; the number of
not killed mutants; mutation testing time; time needed for manual classification.
Conclusions. The results in the DEM category are still far from perfect. Thus, the SEM and AEMG categories have been
developed. The JudyDiffOp algorithm achieved good results in many areas.

Index Terms—mutation testing, equivalent mutant problem, higher order mutation, second order mutation.
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1 Introduction

Mutation testing is a fault-based technique which
measures the fault-finding effectiveness of test

suites, on the basis of induced faults [12], [21]. Muta-
tion testing induces artificial faults or changes into an
application (mutant generation) and checks whether a
test suite is “good enough” to detect them. However,
there are mutations which keep the program seman-
tics unchanged and thus cannot be detected by any
test suite. The problem of detecting equivalence either
between two arbitrary programs or two mutants is an
undecidable problem [4], [8], [18], [56], [64] and is known
as the equivalent mutant problem (EMP).

Mutation testing provides a “mutation score” (MS),
or “mutation adequacy”, which is a testing criterion to
measure the effectiveness or ability of a test suite to
detect faults [9], [12], [21], [79]:
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MS = MK

MT −ME
(1)

Where MT is the total number of produced mutants,
MK is the number of killed mutants (where the differ-
ence in behaviour between the original program and the
mutated one was observed) and ME is the number of
equivalent mutants.

There is a range of mutation testing tools like
Judy [52], Javalanche [71] or µJava (MuJava) [46] with
MuClipse [73]. Unfortunately, finding equivalent mu-
tants still consumes a lot of time and there is no auto-
mated way to detect all of the equivalent mutants. Fur-
thermore, as observed by Schuler and Zeller [72], it takes
an average of 15 minutes to assess one single mutation
for equivalence. Therefore, analysing real world software
projects there is often a need (also in this paper) to
ignore equivalent mutants, which would mean that we
can only measure the mutation score indicator [47], [48],
[49], [52]:

MSI = MK

MT
(2)

It is still a valuable measure but not as desirable as
obtaining the mutation score (Equation 1).

The rest of this paper is organized as follows: Sec-
tion 2 presents a systematic literature review of equiv-
alent mutant detection methods. The results of the
systematic review (Section 3) indicate that the most
promising techniques for handling EMP is higher order
mutation (HOM) in general, and second order mutation
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(SOM) in particular. SOM testing strategies found in
the systematic review are presented in detail in Sec-
tion 4. Those strategies were analysed, extended, im-
proved, and implemented in the Judy mutation testing
tool [52] and then empirically evaluated on a number
of open source software items. Section 5 presents the
design and execution of the experiment, while Section 6
presents the results of the analysis concerning various
SOM and FOM testing strategies. Threats to validity
are discussed in Section 7, while Section 8 discusses the
results. Conclusions and future work are presented in
Section 9.

2 Systematic review
The authors followed the instructions presented by
Kitchenham et al. [40]. As far as we know, there is no
previous systematic literature review (SLR) regarding
the equivalent mutant problem. The only study which
can be classified as a systematic review is the paper by
Jia and Harman [31], which focused on mutation testing
in general and not on the EMP. In their insightful
work, Jia and Harman only mentioned some of the
most crucial methods and, thus, the relevant research
questions posed by us could not be answered by their
review.

Most of the papers found in our preliminary search,
e.g. [60], [70], [75], include sections such as “Related
work,” where the authors discuss some of the existing
approaches. However, they do not perform an SLR and,
thus, only a small number of the existing methods are
introduced in an ad hoc manner. We were, therefore,
not convinced that a representative sample had been
presented previously.

The protocol of our systematic literature review is
publicly available online [62].

2.1 Research questions
Research questions must determine the goal of an
SLR [7], [38], [40], [41], [43]. The objective of this study
was to find a method (or methods) with which we would
be able to overcome the equivalent mutant problem to
a possibly most significant extent.

• RQ1: Which of the existing methods try to
solve the problem of equivalent mutants?
This is a very general question. In this case gen-
eral ideas are also expected. Some of them might
have been implemented and evaluated, while some
might be theoretical suggestions for further refine-
ments.

• RQ2: How can those methods be classified?
As a result, the classification of the existing meth-
ods to some general domains and areas is expected.

• RQ3: What is the maturity of the existing
methods?
All existing methods will be grouped by their ma-
turity.

• RQ4: What are the theoretical ideas on how
to improve the techniques which have al-
ready been empirically evaluated?
In this case, all the sources which the authors men-
tion in “Future work” are to be analysed. Any pos-
sible suggestions which would lead to an increase
in the number of detected equivalent mutants are
welcome.

2.2 Search terms
For each research question, related major terms
were developed. Synonyms, variations in spelling and
structure (e.g. terms with and without hyphenation)
were considered and accounted for in the queries
formed. After constructing the preliminary search
strings, pilot testing against the search engines was
also undertaken in order to investigate the capability
of the search engines, e.g. the handling of Boolean
combinations and sub-query nesting. The resulting
query was as follows:
equivalen* AND mutant* AND (mutation OR testing OR
analysis OR problem* OR issue* OR question* OR (detect* OR
find* OR recognize* OR catch*) AND (method* OR technique*)
OR (method* OR technique*) AND (classification* OR
ranking* OR classified OR categorisation* OR categorization*
OR systematisation OR type* OR kind*) OR (method* OR
technique*) AND (empirical* OR evaluat* OR implement*
OR development OR developed) OR (method* OR technique*)
AND (further OR next OR future OR new) OR (method* OR
technique*) AND (improv* OR progress* OR enhanc* OR refin*
OR increas*))

The detailed forms (due to differences in search
capabilities between various databases) are presented
in the SLR protocol [62]. The title, abstract and
keywords of the articles in the electronic databases
were searched according to those search terms.

2.3 Resources to be searched
2.3.1 Database search
The main information sources to be searched, in the
first iteration, were electronic databases: the ACM Dig-
ital Library, IEEE Xplore, Science Direct, the Springer
Link and the Wiley Online Library.

Those databases were selected because they had been
used as sources for other reviews in this area [31]. Also,
we had a number of “key papers” [6], [20], [25], [56],
[58], [59], [72] and we verified that we could find all of
them in the above databases.

2.3.2 Grey literature
In order to cover grey literature (not controlled by com-
mercial publishers and not necessarily peer-reviewed,
e.g. technical reports, white papers, work in progress,
etc.) [68], some alternative sources were investigated:

• Google scholar
We used three search terms for the first phase,
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and for each of them checked the first 200 results.
The search terms were slightly modified in order
to adopt them to Google scholar and to improve
the effectiveness of the search process. We used the
following search terms:
– equivalen* AND mutant* AND (mutation OR

testing OR analysis)
– equivalen* AND mutant* AND (method* OR

technique*)
– equivalen* AND mutant* AND (problem* OR

issue* OR question*)
• All the proceedings from “Mutation: The Interna-
tional Workshop on Mutation Analysis” (five edi-
tions: 2000–2010).

• Scanning lists of references in all primary studies1,
according to the snowball sampling method [19].

• Checking the personal websites of all the authors of
primary studies, in search of other relevant sources
(e.g. unpublished or latest results).

• Contacting all the authors of primary studies. The
authors were contacted in order to make sure that
no relevant material had been missed.

It is also worth mentioning that the Mutation Testing
Repository [32] provides a very thorough coverage of the
publications in the literature on Mutation Testing and,
therefore, is a highly recommended resource.

2.4 Results selection process
The following inclusion criteria were taken into account
when selecting the primary studies (it was enough for
the paper to pass one of them):

• Describes at least one method for detecting, sug-
gesting or avoiding equivalent mutants (this could
include proof of concepts, empirically evaluated
solutions, as well as theoretical ideas).

• Discusses the classification of the aforementioned
methods.

• Evaluates, analyses or compares the aforemen-
tioned methods.

• Determines the current state of maturity of the
methods dealing with EMP (theoretical ideas/
proofs of concept/empirically evaluated solutions).

• Proposes theoretical ideas on how to improve the
already evaluated methods dealing with EMP.

If the analysed study referred to one of the previously
selected primary studies, then it additionally drew our
attention but it was not the inclusion criterion per se.

The following type of studies were excluded (exclu-
sion criteria):

• The article’s language was other than English.
• The full text of the article could not be found.
• The article concerned mutations in the fields of

study other than software engineering or computer
science, e.g. genetics.

1. The research papers summarised in the review are referred to
as primary studies, while the review itself is a secondary study [7]

2.5 Quality assessment
In addition to the general inclusion and exclusion cri-
teria, it is important to assess the quality of primary
studies [38]. Study quality assessment was adopted in
order to determine the strength of the evidence and to
assign grades to the recommendations generated by the
systematic review [34]. The questionnaire used in this
study was based on the recommendations by Kitchen-
ham and Charters [40] and Khan et al. [34] with some
specific additions resulting from our research questions.
The quality assessment questionnaire can be found in
the SLR protocol [62].

3 Review results
A detailed process of identifying relevant literature is
presented in Figure 1. The number of results found
and used in each phase of the SLR are shown in
Figure 1. In the end, we found 22 primary studies.
One of them [59] was a substantial extension of the
earlier conference paper [56]. All of the primary studies,
except for one [31], presented methods for how to deal
with the equivalent mutant problem. The exception, Jia
and Harman’s [31] study, is a valuable survey of the
development of mutation testing, which, however, only
lists and briefly describes some crucial approaches.

Below we have ranked the top-5 authors, according to
the number of publications. The most active researchers
in the subject of EMP were thus:
1 M. Harman (University College London, UK) [1],

[22], [25], [30], [31]
1 J. Offutt (George Mason University, USA) [56],

[57], [58], [59], [61]
3 R. Hierons (Brunel University, UK) [1], [22], [25]
3 D. Schuler (Saarland University, Germany) [20],

[70], [72]
3 A. Zeller (Saarland University, Germany) [20], [70],

[72]
The literature published by those authors represent

55% of all primary studies.
In the following section, each of the previously pre-

sented research questions is examined separately with
the help of the findings from the SLR (see Table 1).

3.1 Which of the existing methods try to solve the
problem of equivalent mutants?
On the basis of the primary studies, we have found 17
methods for equivalent mutant detection (in chronolog-
ical order):

• Compiler optimizations techniques [6], [58] (1979)
• Using mathematical constraints to automatically

detect equivalent mutants [56], [59] (1996)
• Using program slicing to assist in the detection of

equivalent mutants [25] (1999)
• Selective mutation [55] (1999)
• Avoiding equivalent mutant generation using pro-

gram dependence analysis [22] (2001)
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Fig. 1. Identifying relevant literature.

• Using Bayesian-learning based guidelines to help
to determine equivalent mutants [76] (2002)

• Co-evolutionary search techniques [1] (2004)
• Using equivalency conditions to eliminate equiva-

lent mutants for object oriented mutation opera-
tors [61] (2006)

• Using semantic differences in terms of a running
profile to detect non-equivalent mutants [17](2007)

• Margrave’s change-impact analysis [54] (2007)
• Using Lesar model-checker for eliminating equiva-

lent mutants [15] (2008)
• Examining the impact of equivalent mutants on

coverage [20] (2009)
• Distinguishing the equivalent mutants by semantic

exception hierarchy [28](2009)
• Higher order mutation testing [30], [37], [57], [63]

(2009)
• Using a fault hierarchy to improve the efficiency of

the DNF logic mutation testing [33] (2009)
• Using the impact of dynamic invariants [70] (2009)
• Examining changes in coverage to distinguish

equivalent mutants [69], [72] (2010)

The paper’s length limit does not allow us to explain
the details of the aforementioned methods, as the num-
ber of the latter is quite large. The details of the meth-
ods, however, are described in the references we cite
above (each of the techniques found in this review has at
least one reference). The readers interested in the basics
of software testing in general, and mutation testing in
particular, are expected to look through books [2], [78]
which complement the above mentioned references and
extend the coverage of the topic.

Figure 2 shows how the primary studies are dis-
tributed according to programming language implemen-
tation. Java, Fortran and C are the three languages with
the highest rank. Early work on dealing with equivalent
mutants (including some avoidance rules) were carried

out using Fortran [36]. For C programs, the tools Pro-
teum [11], MILU [29] or Csaw [17] were used; while
for Java programs, it was muJava [46] and the more
recent Javalanche [71] and Judy [52]. There were no
publications describing solutions for the EMP applied
in C# and C++. For example in CREAM [13], [14]
(a mutational tool for C#), equivalent mutants were
identified by hand.

14%

24%

33%

5% 5%

19%

0

1

2

3

4

5

6

7

8

C Fortran Java Lustre XACML
policies

Not Given

N
u

m
b

e
r 

o
f 

p
ri

m
ar

y 
st

u
d

ie
s

Fig. 2. Percentage of primary studies (methods only)
addressing the equivalent mutant problem in different
programming languages.

3.2 How can the equivalent mutant detection
methods be classified?
There was no classification of equivalent mutant de-
tection methods proposed in any of the papers found.
Even the latest analysis and survey of the development
of mutation testing by Jia and Harman [31] has not
provided any categorization yet, only a list of some
important approaches in chronological order. Due to
the amount of research in this field, some sort of early
classification would be helpful to summarize existing
the techniques and to help indicate future work.
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Two approaches to grouping have been considered.
The first one - according to the application domain of
the proposed solution (e.g. compiler optimization tech-
niques or co-evolutionary approaches) and the second
- according to the character of the obtained results
(e.g. direct indication, suggestion, etc.) During the data
extraction process we have noticed that almost all of
the included techniques in the primary studies have
their origins in different and unique areas of computer
science. With such a classification, we would get many
categories containing primarily one or, at the most,
two methods. (That might be a good solution after
some time, if this area continues to grow.) Moreover,
as shown in the answer to the fourth question, the
majority of the proposed approaches combine solutions
from more than one field of study. Therefore, we would
like to propose the classification of methods based on
the collected data (especially as found in the column
“Method Effectiveness” in Table 1).

Our classification distinguishes between three main
categories of methods used to overcome the EMP (for
sake of brevity when there is more than one publication
discussing the topic we have sometimes introduced a
new description of a method):

1) Detecting equivalent mutants techniques
• Compiler optimizations techniques [6], [58]

(1979)
• Mathematical constraints to automatically

detect equivalent mutants [56], [59] (1996)
• Program slicing to assist in the detection of

equivalent mutants [25] (1999)
• Semantic differences in terms of

running profile to detect non-equivalent
mutants [17](2007)

• Margrave’s change-impact analysis [54](2007)
• Lesar model-checker for eliminating equiva-

lent mutants [15] (2008)
2) Avoiding equivalent mutant generation techniques

• Selective mutation [55] (1999)
• Avoiding equivalent mutant generation using

program dependence analysis [22] (2001)
• Co-evolutionary search techniques [1] (2004)
• Equivalency conditions to eliminate equiva-

lent mutants for object-oriented mutation op-
erators [61] (2006)

• Fault hierarchy to improve the efficiency of
DNF logic mutation testing [33] (2009)

• Distinguishing the equivalent mutants by se-
mantic exception hierarchy [28](2009)

• Higher order mutation testing [30], [37], [57],
[63] (2009)

3) Suggesting equivalent mutants techniques
• Using Bayesian-learning based guidelines to

help to determine equivalent mutants [76]
(2002)

• Examining the impact of equivalent mutants
on coverage [20] (2009)

• Using the impact of dynamic invariants [70]
(2009)

• Examining changes in coverage to distinguish
equivalent mutants [69], [72] (2010)

Figure 3 shows the distribution of primary studies
over the years. It is quite clear that recently researchers
have focused more on two categories of methods to
overcome the EMP: avoiding equivalent mutant gener-
ation and suggesting equivalent mutants. We can only
speculate as to the reason behind that tendency, but a
plausible explanation is that detection techniques are
also very hard to implement, and few researchers in the
past decade have tackled testing problems which require
hard programming. Beyond Offutt’s research on soft-
ware testing coupling effects and higher order mutation
testing from 1992 [57], which actually was not focused
on the EMP per se (it was not considered to be the
main benefit of this technique), we can claim that the
first and most obvious way of dealing with equivalent
mutants are the equivalent mutant detection techniques
(the first category). The most effective approach from
this category detects 47.63% of the equivalent mutants
and finds over 70% of unreachable statements [56], [59];
however, such a solution still needs a lot of manual
and error-prone work. An advantage of detecting tech-
niques is that they give no false positives, as suggesting
equivalent mutants does. On the other hand, detecting
techniques can never be complete. In summary, all three
categories are thus complementary.

With the beginning of the 21st century, two new
approaches began to be considered. Ever since then,
the best method for suggesting equivalent mutants to a
software tester has been considered to be the technique
of assessing the impact of a mutant’s internal behaviour
as proposed by Schuler [72]. If it is observed that the
mutation changes coverage, it has a 75% chance of being
non-equivalent.

From the group of techniques which avoid equivalent
mutant generation, two recent studies provide inter-
esting results. Both of the papers are empirical eval-
uations of higher order mutation testing. The method
implemented by Papadakis and Malevris [63] for the C
programming language leads to the reduction of approx-
imately 80–90% of the generated equivalent mutants.
For the Java language, according to Kintis et al. [37],
the obtained results vary from 65.5% for HDom(50%)
to 86.8% for the SDomF strategy with the loss of test
effectiveness being only 1.75% for HDom(50%) and
4.2% for SDomF 2.
As Table 1 indicates, only a small number of studies

provide explicit results, which, thus, makes it difficult
to compare methods.

2. HDom(50%) and SDomF are the names of the mutation
testing strategies evaluated by Kintis et al. [37]. 50% in the name
of the former strategy comes from the fact that besides SOMs
generated by the strategy on a basis of FOMs, a randomly selected
subset of the 50% of the remaining FOMs is included in the
generated set of mutants.
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TABLE 1
Primary studies.

Ref Authors Year Language Maturity Method Effectiveness QA Result

[6] D. Baldwin,
F. Sayward

1979 Fortran TI Not Given 72%

[57]
J. Offutt 1992 Fortran EE Only from 0.53% to 1.4% generated 2-order

mutants were equivalent.
82%

[58]
J. Offutt, M. Craft 1994 Fortran EE About 10%, with 25% standard deviation 100%

[56],
[59]

J. Offutt, J. Pan 1996 Fortran EE 47.63% 100%

[25]
R. Hierons et al. 1999 Not Given TI Should be equal to constraint solving

approaches [56], [59] — 47.63%
89%

[55]
E. Mresa, L. Bottaci 1999 Fortran EE Not Given 85%

[22]
M. Harman et al. 2001 Not Given TI Not Given 89%

[76]
A. Vincenzi et al. 2002 C EE Not Given 100%

[1] K. Adamopoulos et
al.

2004 Not Given TI Avoids equivalent mutant generation 72%

[61]
J. Offutt et al. 2006 Java EE Not Given 95%

[17]
M. Ellims et al. 2007 Not Given TI Not Given 75%

[54]
E. Martin, T. Xie 2007 XACML

policies
PoC Not Given 78%

[15]
L. du Bousquet,
M. Delaunay

2008 Lustre EE Not Given 95%

[20]
B. Grün et al. 2009 Java EE Suggests (non-)equivalent mutants 100%

[28]
C. Ji et al. 2009 Java TI 100% 78%

[30]
Y. Jia, M. Harman 2009 C PoC Not Given 83%

[33]
G. Kaminski,
P. Ammann

2009 Java EE Avoids equivalent mutant generation 85%

[70]
D. Schuler et al. 2009 Java EE Not Given 100%

[37]
M. Kintis et al. 2010 Java EE Reduces the number of generated equivalent

mutants (from 65.6% to 86.8%).
91%

[63]
M. Papadakis,
N. Malevris

2010 C EE Reduction of approx. 80% to 90% of generated
equivalent mutants

91%

[69],
[72]

D. Schuler, A. Zeller 2010 Java EE Suggests non-equivalent mutants with a 75%
probability

91%

[31]
Y. Jia, M. Harman 2010 - - - 67%

TI - Theoretical idea; PoC - Proof of concept; EE - Empirically evaluated

3.3 What is the maturity of existing methods?

In order to categorize further the identified methods we
have distinguished between three categories: theory (six
studies), proof of concept (two studies) and empirically
evaluated methods (thirteen studies). In short, 62% of
the studies are classified as being empirically evaluated.

Figure 4 shows the number of techniques by year
(1979–2010). It is clear that the number of published
studies in recent years is growing and most of the recent
techniques are empirically evaluated. That provides
some evidence corresponding with the results obtained
for mutation testing in general by Jia and Harman [31]
that EMP, like the overall field of mutation testing, is
moving from theory to practical solutions.

3.4 What are the theoretical ideas on how to im-
prove already empirically evaluated techniques?

Seven out of thirteen (54%) publications which contain
empirical evaluation present ideas on how to improve
the proposed methods. Furthermore, the authors of
three theoretical studies have also provided some ideas
for future work, hence, a total of 50% of the primary
studies suggests future improvements.
Some authors have ideas on how to use two methods

in tandem [22], [25], like for example Hierons et al. [25],
in which the authors want to use a constraint solving
technique together with program slicing. Other ideas
are based on solving the problems which occurred in
their specific studies [15], [56]. A very common sugges-
tion is to consider some other possibilities [20], [28],
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Fig. 3. Classified solutions of equivalent mutant problem from 1992–2010 (cumulative view).
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Fig. 4. Solutions of the equivalent mutant problem by maturity from 1979–2010 (cumulative view).

[58], [70], [76], e.g. Schuler et al. [70] and Grün et al.
[20] mention alternative impact measures, while Ji et al.
[28] propose also to consider weak and firm mutations
in higher order mutation testing.

3.5 Limitations of the review
This section presents the limitations of our SLR, in
order to assess the validity of the outcome. The findings
of this systematic review may have been mainly affected
by the following limitations: difficulty in finding all
the relevant studies (including grey literature); bias
in the selection of the reviewed papers; inaccuracy in
data extraction; inaccuracy in classifying the reported
approaches; inaccuracy in assigning scores to each study
of each element for the quality assessment criteria; and

possible misinterpretations due to the fact that English
is not the native language of the authors.

Finding all the relevant papers is known to be one
of the major problems of systematic literature re-
views [42]. In this case, we used an automated search of
five main sources. However, we did not look into every
possible source. The chosen databases were selected on
the basis of the experiences shared by other groups [31],
[41], [42].

Our search strings were designed to find the maxi-
mum number of known approaches towards EMP but
it is still possible that we have left out the studies
which might describe their subject in terms other than
“equivalent mutant”.

Due to the growing interest and the number of pub-
lications in the research area of mutation testing, some
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relevant papers may have been omitted. However, like
other researchers of SLR, we are confident that it is not
a systematic error [26], [35]

In addition, we found it to be a good practice to
include grey literature search in order to make sure we
covered non-published work to some extent [39]. For
that reason, when considering grey literature, we took
a large number of sources into account (e.g. Google
Scholar, the personal webpages of authors and snowball
sampling). The final step was to contact all relevant
authors to review our list of primary studies.

In order to avoid subjective bias, it is helpful to follow
the best practices suggested by the SLR practitioners.
For example, it is recommended that three researchers
be involved in the literature review process [5]. For both
the screening and data extraction phases three people
were involved in order to avoid subjective bias and to
resolve doubts and discrepancies.

To ensure that the selection process during the de-
tailed assessment of the papers’ full text was entirely
independent, we recorded the motivations for its inclu-
sion or exclusion; then we verified the findings according
to the inclusion and exclusion criteria from the SLR
protocol. During full text screening we had some dis-
crepancies, e.g. an article by Mresa and Botacci [55]
was initially excluded by one of the researchers but we
finally decided to include it due to the description of se-
lective mutation from the perspective of the equivalent
mutant problem.

The process of classifying the approaches towards
EMP, as well as classifying the maturity (theoretical
ideas, proofs of concept and empirically evaluated solu-
tions), involved subjective decisions on the part of the
researchers. To minimize these limitations, whenever
there was a doubt on how to classify a particular paper,
we discussed the case in order to resolve all discrep-
ancies and doubts. During the data extraction phase
we found several papers which lacked sufficient details
regarding method effectiveness, i.e. in our sample of
22 papers only 8 papers provided details regarding the
method’s effectiveness. Due to that limitation, we were
unable to compare methods and offer a complete view
of their effectiveness.

Since English is not the native language of any of the
researchers involved in this study, there is a risk that
some of the papers have been misinterpreted during any
of the stages of the performed literature review. On the
other hand, all the decisions and results were checked
by all of the authors.

3.6 Conclusions of the systematic review
The first part of the paper provided a detailed review
of the EMP area. As has been shown, the last twenty
years have witnessed a particularly large increase in the
number of approaches on how to solve the EMP, with
many of them in an advanced maturity stage.

So far, the paper has identified the existing methods
for EMP and provided data in order to highlight the

growth of the number of papers. The collected data also
offer suggestions on how to improve these techniques. In
addition, we have proposed a detailed categorization of
the existing approaches, i.e. detecting, suggesting and
avoiding equivalent mutant generation.

One contribution of our SLR, in comparison to Jia
and Harman’s survey [31], is a more complete list of
the existing solutions for the equivalent mutant prob-
lem. With a thorough analysis of the available sources,
including coming into contact with all relevant authors
and scanning their personal websites, more methods
have been identified. We have investigated avoiding
equivalent mutant generation techniques as an addi-
tional group of approaches and found some omitted
methods in other categories. Obviously, by focusing
only on the equivalent mutant problem and having more
delimited research questions, our study consequently
supplies more detailed results from the EMP perspec-
tive. It is important to mention, though, that taking
a subset of Jia and Harman’s results regarding EMP
will not give as complete a view on EMP as our SLR
actually does.

The most promising technique for overcoming EMP
seems to be higher order mutation (HOM) in general,
and second order mutation (SOM) in particular. SOM
has potential advantages to be of benefit for mutation
testing tools, e.g. reducing the number of equivalent
mutants [30], [57], [63] and reducing test effort (testing
time) due to a reduced number of produced second
order mutants [30], [63]. Furthermore, the manual as-
sessment of mutant equivalence in the case of second
order mutants should be fast. If the first of two first
order mutants (combined to produce a second order
mutant) is non-equivalent then it is very likely that
the second order mutant will be non-equivalent too [65,
Table I]. Hence, for the remaining part of the paper,
we will focus on the SOM testing strategies, present
implementations of the SOM strategies in the Judy
mutation testing tool for Java [52], and empirically
evaluate those implementations.

4 Higher order mutation testing strategies
Higher order mutation testing was initially introduced
in the context of the mutant coupling effect in 1992
by Offutt. Offutt showed that “the set of test data
developed for FOMs actually killed a higher percentage
of mutants when applied to SOMs” [57].

Jia and Harman [30] distinguished between six types
of HOMs and created a categorization of HOMs. They
introduced the concept of subsuming and strongly sub-
suming higher order mutants (subsuming HOMs are
harder to kill than FOMs from which they are con-
structed). The authors suggested that it might be
preferable to replace constituent FOMs with a single
HOM as a cost reduction technique. In particular,
strongly subsuming HOMs are highly valuable to the
mutation testing process. They are only killed by a
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subset of the intersection of test cases which kill each
constituent FOM. As we may see via analysis of the
types of HOMs discussed by Jia and Harman [30], there
is no simple relation between killabilities (defined as
how hard it is to kill the mutant) of HOM and the
FOMs the HOM is constructed from. Jia and Harman
also concluded that “the numbers of strongly subsuming
HOMs is high and introduced a search-based optimiza-
tion approach to select valuable HOMs” [30].

It is also worth mentioning that there is some em-
pirical evidence to suggest that the majority of real
faults are complex faults [16], [66]. A complex fault is
a fault that cannot be fixed by making a single change
to a source statement [57]. Such complex faults could
only be simulated by higher order mutation [23]. The
empirical results by Purushothaman and Perry [66] also
reveal that there is less than 4 percent probability that a
one-line change will introduce a fault in the code. All of
those arguments make HOM an interesting alternative
to evaluate to FOM.

Langdon et al. [44] applied multi objective Pareto
optimal genetic programming to a generation of HOMs.
Their algorithm evolves mutant programs according to
two fitness functions: semantic difference and syntac-
tic difference. In their experiment, they found realistic
HOMs which are harder to kill as compared with first
order mutants.

The opposite approach to selecting an optimal set
of HOMs, according to the results from the muta-
tion analysis of FOMs, is a technique used by Polo
et al. [65]. They introduced three different algorithms
(Last2First, DifferentOperators, and RandomMix) to
combine FOMs to generate second order mutants
(SOMs). Empirical results suggest that applying SOMs
reduced the number of mutants by approximately 50%,
without much decrease in the quality of the test suite.

Algorithms from the study by Polo et al. [65] were
further investigated by Papadakis and Malevris [63],
in particular, from the perspective of EMP. The re-
sults of their empirical study are promising: equivalent
mutant reduction between 85.65–87.77% and fault de-
tection ability loss from 11.45–14.57%. They indicate
that SOMs can significantly decrease the number of
introduced equivalent mutants and, because of approxi-
mately 50% mutants reduction, be a valid cost effective
alternative.

Kintis et al. [37] presented another empirical study
of higher order mutation testing strategies. They fo-
cused on the fact that SOMs achieve higher collateral
coverage for strong mutation as compared with third
or higher order mutants. A set of new SOM testing
strategies was introduced and evaluated. The authors
obtained the most promising results using hybrid strate-
gies. Equivalent mutant reduction varied between 65.5%
for HDom(50%) and 86.8% for the SDomF strategy,
with a loss of test effectiveness from just 1.75% for
HDom(50%) to 4.2% for SDomF .
The short verbal description of algorithms given by

Polo et al. [65] appears to be open to interpretation. As
a result, there is no guarantee that our versions of the
Last2First and RandomMix algorithms act in exactly
the same manner as proposed by Polo et al. That
sounds like a disadvantage but, fortunately, appears
to be an advantage as well, because our version of
the DifferentOperators algorithm (called JudyDiffOp)
not only significantly differs from the original one but
also outperforms Polo’s et al. version. To help other
researchers and practitioners replicate our study, we
decided to include in the paper a detailed pseudo-code
of the algorithms evaluated in our study (Algorithms
1-4).

The first algorithm proposed by Polo et al. [65] is
the Last2First algorithm. It needs the list of first-order
mutants in the order in which they were generated.
Last2First combines the first mutant with the last, then
the second with the next-to-last, and so on. Each first-
order mutant is used once, except when the number
of first-order mutants is odd. In that case, one mutant
is used twice. The number of generated second-order
mutants is reduced to half of the number of first-order
mutants. The pseudo-code of the Last2First algorithm
is presented as Algorithm 1.

Algorithm 1 Last2First(program, operators[ ]).
1: LET firstOrderMutants be an empty list
2: FOR ALL operator in operators
3: mutationP oints[] ⇐

operator.countMutationP oints(
program)

4: FOR ALL point in mutationP oints
5: possibleMutations[] =

operator.countP ossibleMutations(program, point)
6: FOR EACH possibleMutant in

possibleMutations DO
7: newMutant ⇐

operator.mutate(program, point,
possibleMutant)

8: firstOrderMutants ⇐ newMutant
9: END FOR
10: END FOR
11: END FOR
12: LET secondOrderMutants be an empty list
13: WHILE firstOrderMutants.size > 1 DO
14: fom1 ⇐ firstOrderMutantsÕlast
15: firstOrderMutants.remove(fom1)
16: fom2 ⇐ firstOrderMutantsÕfirst
17: IF firstOrderMutants.size 6= 2 THEN
18: firstOrderMutants.remove(fom2)
19: END IF
20: operator ⇐ fom2Õoperator
21: newMutant ⇐ operator.mutate(fom1Õprogram,

fom2Õpoint, fom2ÕpossibleMutant)
22: secondOrderMutants ⇐ newMutant
23: END WHILE
24: RETURN secondOrderMutants

In the DifferentOperators strategy the combination
of first-order mutants is made by selecting pairs that
use mutants produced by different operators. The short
verbal description of algorithms given by Polo et al.
[65] leads to a situation where that can be interpreted
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differently. In the version implemented in the Judy
mutation testing tool (hence called JudyDiffOp) each
first-order mutant is used as little as possible (i.e. both
constituent FOMs are used only once for producing a
SOM). Our version gives at least a 50% mutants reduc-
tion and we find it hard to obtain the level of reduction
as achieved by [63], [65]; however, it appears that our
version outperforms Polo’s version. The pseudo-code of
the JudyDiffOp algorithm is presented as Algorithm 2.

Algorithm 2 JudyDiffOp(program, operators[ ]).
1: LET firstOrderMutants be an empty list
2: FOR ALL operator in operators
3: mutationP oints[] ⇐

operator.countMutationP oints(
program)

4: FOR ALL point in mutationP oints
5: possibleMutations[] =

operator.countP ossibleMutations(program, point)
6: FOR EACH possibleMutant in

possibleMutations DO
7: newMutant ⇐

operator.mutate(program, point,
possibleMutant)

8: firstOrderMutants ⇐ newMutant
9: END FOR
10: END FOR
11: END FOR
12: LET secondOrderMutants be an empty list
13: WHILE firstOrderMutants.size > 1 DO
14: fom1 ⇐ firstOrderMutantsÕfirst
15: firstOrderMutants.remove(fom1)
16: WHILE firstOrderMutants.size > 0 DO
17: fom2 ⇐ firstOrderMutantsÕfirst
18: firstOrderMutants.remove(fom2)
19: IF fom1Õoperator 6= fom2Õoperator THEN
20: operator ⇐ fom2Õoperator
21: newMutant ⇐

operator.mutate(fom1Õprogram,
fom2Õpoint, fom2ÕpossibleMutant)

22: secondOrderMutants ⇐ newMutant
23: END IF
24: END WHILE
25: END WHILE
26: RETURN secondOrderMutants

RandomMix is the last algorithm from the set pro-
posed by Polo et al. [65]. To allow for a comparison
of the two previous algorithms with pure chance, that
algorithm combines any two first-order mutants, using
each mutant once. Similarly to Last2First, when the
number of first-order mutants is odd, one of the mutants
is used twice. By definition RandomMix reduces the
number of generated second-order mutants by half, with
respect to first-order mutants. The pseudo-code of the
RandomMix algorithm is presented as Algorithm 3.

In contrast to the Last2First algorithm, we would like
to introduce the NeighPair strategy. It combines FOMs
which are as close to each other as possible, i.e. a list of
mutation points for FOMs is created and neighbouring
pairs are selected to construct SOMs. The number of
generated SOMs is, thus, reduced by half. The pseudo-
code of the NeighPair algorithm is presented as Algo-

Algorithm 3 RandomMix(program, operators[ ]).
1: LET firstOrderMutants be an empty list
2: FOR ALL operator in operators
3: mutationP oints[] ⇐

operator.countMutationP oints(
program)

4: FOR ALL point in mutationP oints
5: possibleMutations[] =

operator.countP ossibleMutations(program, point)
6: FOR EACH possibleMutant in

possibleMutations DO
7: newMutant ⇐

operator.mutate(program, point,
possibleMutant)

8: firstOrderMutants ⇐ newMutant
9: END FOR
10: END FOR
11: END FOR
12: LET secondOrderMutants be an empty list
13: WHILE firstOrderMutants.size > 1 DO
14: fom1 ⇐ firstOrderMutantsÕfirst
15: firstOrderMutants.remove(fom1)
16: fom2 ⇐ firstOrderMutantsÕrandom
17: IF firstOrderMutants.size 6= 2 THEN
18: firstOrderMutants.remove(fom2)
19: END IF
20: operator ⇐ fom2Õoperator
21: newMutant ⇐ operator.mutate(fom1Õprogram,

fom2Õpoint, fom2ÕpossibleMutant)
22: secondOrderMutants ⇐ newMutant
23: END WHILE
24: RETURN secondOrderMutants

rithm 4.
It is also worth remembering that our SOM strategies

do not search for subsuming HOMs.

5 Experimental setup
The aim of the experiment was to answer the following
research questions:

• RQe1: What is the reduction in the number
of mutants for the SOM strategies as com-
pared with FOM?

• RQe2: What is the reduction in the number
of equivalent mutants for the SOM strategies
as compared with FOM?

• RQe3: What is the reduction in the number
of live mutants for the SOM strategies as
compared with FOM?

• RQe4: What is the relative change in muta-
tion scores for each of the investigated SOM
strategies as compared with FOM?

• RQe5: What is the reduction of mutation
testing time using the SOM strategies as
compared with FOM?

• RQe6: What is the potential reduction in the
time required to assess whether each of the
mutants is equivalent or non-equivalent?

5.1 Software under test (SUT)
In most of the papers [23], [29], [30], [37], [44], [63]
related to higher order mutant generation strategies the
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Algorithm 4 NeighPair(program, operators[ ]).
1: LET firstOrderMutants be an empty list
2: FOR ALL operator in operators
3: mutationP oints[] ⇐

operator.countMutationP oints(program)
4: FOR ALL point in mutationP oints
5: possibleMutations[] =

operator.countP ossibleMutations(program,
point)

6: FOR EACH possibleMutant in
possibleMutations DO

7: newMutant ⇐
operator.mutate(program, point,
possibleMutant)

8: firstOrderMutants ⇐ newMutant
9: END FOR
10: END FOR
11: END FOR
12: LET secondOrderMutants be an empty list
13: WHILE firstOrderMutants.size > 1 DO
14: fom1 ⇐ firstOrderMutantsÕfirst
15: firstOrderMutants.remove(fom1)
16: fom2 ⇐ firstOrderMutantsÕfirst
17: IF firstOrderMutants.size 6= 2 THEN
18: firstOrderMutants.remove(fom2)
19: END IF
20: operator ⇐ fom2Õoperator
21: newMutant ⇐ operator.mutate(fom1Õprogram,

fom2Õpoint, fom2ÕpossibleMutant)
22: secondOrderMutants ⇐ newMutant
23: END WHILE
24: RETURN secondOrderMutants

benchmark programs (SUT) were small (50–5,000 lines
of code, or LOC). Only Polo et al. [65] applied their
strategies to a SUT which had more than 10,000 lines of
code. However, the most important concern regards the
scalability of using mutation when we have thousands
of classes. Solving that is as much about automation
(by means of mutation testing tools which are able
to smoothly integrate with different software develop-
ment infrastructures) as about reducing the number
of mutants (which we will discuss in the paper). Judy
mutation testing tool for Java helped us to deal with
both concerns.

For our experiment, we selected four open source
projects, which are larger (in terms of lines of code)
than those analysed by other researchers [23], [29],
[30], [37], [44], [63], have high quality test cases and
high branch coverage. We assumed that such programs
would represent software developed in the industry and
allow us to draw unbiased conclusions to some extent.
Table 2 presents our software under test. Apart from
the LOC, branch coverage, number of classes and test
cases, we also included the mutation score indicator
(MSI) [47], [48], [49], which is a quantitative measure
of the quality of test cases, defined as the ratio of killed
mutants to all mutants (see Equation 2).

This definition is different from mutation score (MS),
as MSI ignores equivalent mutants. Hence, MSI can be
seen as the lower bound on mutation score.

The following projects have been selected for the

experiment:
• Barbecue3 – is a library that provides the means

to create barcodes for Java applications.
• Apache Commons IO4 – is a library of utilities to

assist with developing input/output functionality.
• Apache Commons Lang5 – provides a host of helper

utilities for the standard java.lang package, in-
cluding operations on strings, collections, dates,
etc.

• Apache Commons Math6 – is a wide set of utilities
for mathematical and statistical operations.

5.2 Supporting tool
For the experiment we have used Judy [52], a mutation
testing tool for Java, which supports all three mutation
testing phases: mutant generation, mutant execution
and mutation analysis. We have extended the latest
version of Judy [53] with second-order mutation testing
mechanisms. The list and description of all 48 mutation
operators available in Judy is presented in Table 3.

5.3 Experimental procedure
In the first phase we implemented all of the investigated
strategies in Judy. Next, four 7–80 KLOC, open source
programs were chosen (see Section 5.1) for an empirical
evaluation. We first applied FOM testing on each SUT.
In this way the number of all generated mutants, the
number of all live mutants, and the MSI metric were
obtained. Then, the comparison was performed with
each SOM strategy. Each of the examined strategies
were applied to each SUT, i.e. for four programs we
applied five strategies (i.e. four SOM strategies as well
as the FOM strategy).

To answer the second research question, all of the
results were verified manually in order to identify possi-
ble equivalent mutants. However, determining the exact
number of equivalent mutants was not the purpose
of this study. In fact, it is a tedious and very time-
consuming task [72], due to the large number of mu-
tants in real world projects and the time necessary to
assess whether each of the mutants is equivalent or non-
equivalent (about 15 minutes according to Schuler and
Zeller [72]). Thus, we needed to set a sample size out
of convenience, i.e. we decided to manually analyse 50
randomly selected unkilled mutants per strategy per
SUT. As a result, we manually classified 1,000 mutants
(five strategies × four SUT × 50 mutants per sample)
as equivalent or non-equivalent. During this process
we kept in mind the characteristics of second order
mutants’ constituents, as introduced by Polo et al. [65,
Table I].

3. http://barbecue.sourceforge.net/
4. http://commons.apache.org/io/
5. http://commons.apache.org/lang/
6. http://commons.apache.org/math/

http://barbecue.sourceforge.net/
http://commons.apache.org/io/
http://commons.apache.org/lang/
http://commons.apache.org/math/
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TABLE 2
Software under test.

Project LOC No. of
classes

No. of test
cases

Branch
coverage

MSI No. of
FOMs

Barbecue 7,413 59 21 50% 41% 1112
Commons IO 16,283 100 43 84% 84% 5983
Commons Lang 48,507 81 88 89% 72% 17833
Commons Math 80,023 406 221 95% 77% 21691

TABLE 3
Mutation operators available in Judy mutation testing tool.

AIR

AIR_ Add Replaces basic binary arithmetic instructions with ADD
AIR_ Div Replaces basic binary arithmetic instructions with DIV
AIR_ LeftOperand Replaces basic binary arithmetic instructions with their left operands
AIR_ Mul Replaces basic binary arithmetic instructions with MUL
AIR_ Rem Replaces basic binary arithmetic instructions with REM
AIR_ RightOperand Replaces basic binary arithmetic instructions with their right operands
AIR_ Sub Replaces basic binary arithmetic instructions with SUB

JIR

JIR_ Ifeq Replaces jump instructions with IFEQ (IF_ ICMPEQ, IF_ ACMPEQ)
JIR_ Ifge Replaces jump instructions with IFGE (IF_ ICMPGE)
JIR_ Ifgt Replaces jump instructions with IFGT (IF_ ICMPGT)
JIR_ Ifle Replaces jump instructions with IFLE (IF_ ICMPLE)
JIR_ Iflt Replaces jump instructions with IFLT (IF_ ICMPLT)
JIR_ Ifne Replaces jump instructions with IFNE (IF_ ICMPNE, IF_ ACMPNE)
JIR_ Ifnull Replaces jump instruction IFNULL with IFNONNULL and vice-versa

LIR

LIR_ And Replaces binary logical instructions with AND
LIR_ LeftOperand Replaces binary logical instructions with their left operands
LIR_ Or Replaces binary logical instructions with OR
LIR_ RightOperand Replaces binary logical instructions with their right operands
LIR_ Xor Replaces binary logical instructions with XOR

SIR
SIR_ LeftOperand Replaces shift instructions with their left operands
SIR_ Shl Replaces shift instructions with SHL
SIR_ Shr Replaces shift instructions with SHR
SIR_ Ushr Replaces shift instructions with USHR

Inheritance

IOD Deletes overriding method
IOP Relocates calls to overridden method
IOR Renames overridden method
IPC Deletes super constructor call
ISD Deletes super keyword before fields and methods calls
ISI Inserts super keyword before fields and methods calls

Polymorphism

OAC Changes order or number of arguments in method invocations
OMD Deletes overloading method declarations, one at a time
OMR Changes overloading method
PLD Changes local variable type to super class of original type
PNC Calls new with child class type
PPD Changes parameter type to super class of original type
PRV Changes operands of reference assignment

Java-Specific
Features

EAM Changes an accessor method name to other compatible accessor method names
EMM Changes a modifier method name to other compatible modifier method names
EOA Replaces reference assignment with content assignment (clone) and vice-versa
EOC Replaces reference comparison with content comparison (equals) and vice-versa
JDC Deletes the implemented default constructor
JID Deletes field initialization
JTD Deletes this keyword when field has the same name as parameter
JTI Inserts this keyword when field has the same name as parameter

Jumble-Based
[27], [74]

Arithmetics Mutates arithmetic instructions
Jumps Mutates conditional instructions
Returns Mutates return values
Increments Mutates increments

The next section presents the comparisons regard-
ing the reduction in the number of mutants (to an-
swer RQe1), the reduction in the number of equivalent
mutants (RQe2), the reduction in the number of live
mutants (RQe3), the relative change in mutation scores
(RQe4), the reduction of time required for mutation
testing (RQe5) and the potential reduction in the time
required to assess whether each of the second order
mutants is equivalent or non-equivalent in comparison
with first order mutants (RQe6).

6 Experimental results and analysis
The experimental results derived from the application
of the FOM testing and the four SOM testing strategies
are presented and analysed in this section.

6.1 Mutant reduction
For each of the analysed projects and investigated
strategies, the number of generated first order mu-
tations was compared with the number of produced
second order mutations. The results are presented in
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Table 4. Decreasing the number of mutants (called mu-
tants reduction) makes the process of mutation testing
more efficient, since execution time decreases.
RandomMix, Last2First and NeighPair strategies

achieved a reduction (approx. 50%) consistent with the-
ory (see Section 4), as well as the results from the stud-
ies of Polo et al. [65] and Papadakis and Malevris [63]
(except, of course, for the NeighPair algorithm, which
has not been previously evaluated). The highest mutant
reduction was obtained by the JudyDiffOp strategy.
The explanation is simple, the JudyDiffOp strategy by
definition does not create SOMs from two consecutive
FOMs, if the latter involve the same operator. Hence,
the number of SOMs created according to the Judy-
DiffOp strategy is less, and the reduction is higher (i.e.
well over 50%)..

It is worth noting that Papadakis and Malevris [63]
only achieved a 27.68% reduction on average. This
discrepancy in the results most likely stems from the
differences in the implementations of the algorithms.
In our version of the DifferentOperators algorithm (i.e.
JudyDiffOp), both constituent FOMs were used only
once for producing a SOM. This algorithm removes
at least half the number of generated mutants. Con-
sequently, with this version of DifferentOperators it is
impossible to obtain mutant reductions at a level simi-
lar to Papadakis and Malevris [63]. Unfortunately, the
authors of the original algorithm did not make available
its code or pseudo-code, only a plain-text description,
which is not precise enough to replicate their version of
the algorithm. We can still declare with certainty that
our modified version of the DifferentOperators algo-
rithm (called JudyDiffOp) provides the highest mutants
reduction. (We have included the pseudo-code of our
implementation as Algorithms 1, 2, 3, and 4.)

On the basis of the empirical results (presented in this
section) and statistical analysis of mutants reduction
(described in detail in Appendix A1 [51]) one may come
to the conclusion labelled as Finding 1.

Finding 1: The second order mutation strategy
called JudyDiffOp significantly reduced the total
number of generated mutants in comparison with
the first order mutation. The size of the effect was
large and in favour of JudyDiffOp.

Other findings are discussed in subsequent sections.

6.2 Equivalent mutant reduction
This section presents the achieved reductions of the
introduced equivalent mutants. Two of the authors
manually classified samples of live mutants. Following
the experimental procedure described in Section 5.3,
1000 mutants were manually classified in total, i.e.
50 mutants for each of the analysed SUT (Barbecue,
Commons IO, Commons Lang, Commons Math) and

each of the analysed mutation strategy (FOM, Random-
Mix SOM, Last2First SOM, JudyDiffOp SOM, Neigh-
Pair SOM). The obtained results are shown in detail
in Table 5. In each sample of 50 manually classified
unkilled mutants in the SUTs, we found between 11
(in Commons Math) and 33 (in Barbecue) equivalent
mutants using FOM, but only 7-9 equivalent mutants
applying the RandomMix strategy, 5-6 equivalent mu-
tants applying the Last2First strategy, 4-6 equivalent
mutants applying the JudyDiffOp strategy, and 11-25
equivalent mutants applying the NeighPair strategy.
Our results are in line with the results obtained by
Schuler and Zeller [69], [72]. They found, by manual
assessment of 140 uncaught mutations in seven Java
programs, that 45% of all uncaught mutations were
equivalent. We also agree with their explanation, which
applies to our work as well, that this high number,
although it may come as a surprise, comes from the fact
that several non-equivalent mutants are already caught
by the test suite.

Equivalent mutant reduction with respect to the
FOM strategy is presented in Figure 5. This figure
brings out more interesting findings and leads to four
valuable conclusions. First of all, we should admit that
all three strategies proposed by Polo et al. [65] reduce
the number of equivalent mutants. By applying them
to larger and more complex projects than in earlier
publications, we provide even better indications of their
value.

For NeighPair—the new algorithm proposed by us—
we obtained disappointing results. Equivalent mutant
reduction was observable only for Barbecue. For the
Commons IO and Lang projects, that strategy gener-
ated more equivalent mutants than the FOM strategy.
From the perspective of equivalent mutant reduction,
the NeighPair strategy generated the worst results.

Our second algorithm, JudyDiffOp, is based on the
DifferentOperators idea by Polo et al. [65]. The al-
gorithm generates the least equivalent mutants and
from the perspective of the equivalent mutant problem
seems to be the best choice. The results published by
Papadakis and Malevris [63] are in contradiction with
our results. In their study Last2First has the highest
reduction (87.77%), followed by RandomMix (87.11%)
and, finally, DifferentOperators (85.65%). In our study,
the differences between reductions obtained for each
strategy are not as small. A plausible explanation for
the aforementioned differences comes from possible dis-
crepancies between the textual descriptions provided by
Polo et al. [65] and the algorithms which are described
in the pseudo-code (presented in the appendices [51])
and implemented by us.

The last conclusion is that the highest reduction was
achieved for Barbecue; the smallest project (in terms
of lines of code), with the lowest branch coverage and
lowest MSI. The results obtained for Barbecue are close
to the results presented by Papadakis and Malevris [63],
who only analysed small projects (7 projects with a
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TABLE 4
Total number of mutants using First Order Mutation (FOM) and different Second Order Mutation (SOM) strategies.

Project name FOM SOM strategies:
RandomMix Last2First JudyDiffOp NeighPair

Barbecue 1,112 562 562 314 562
Commons IO 5,983 3,009 3,009 2,319 3,009
Commons Lang 17,833 8,930 8,930 6,452 8,930
Commons Math 21,691 10,498 10,498 9,252 10,498
Average reduction
with respect to FOM: 50.2% 50.2% 63.5% 50.2%
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Fig. 5. Equivalent mutant reduction with respect to first order mutation.

TABLE 5
Number of equivalent mutants in a sample (50 unkilled

mutants) using First Order Mutation (FOM) and
different Second Order Mutation (SOM) strategies.

Project FOM SOM strategies:
name Random Last2 Judy Neigh

Mix First DiffOp Pair
Barbecue 33 9 5 6 25
Commons IO 13 7 6 4 14
Commons Lang 12 7 6 5 14
Commons Math 11 8 6 5 11

number of LOC below or equal to 513 and one project
with LOC below 6 KLOC). They also achieved approx-
imately 80% less equivalent mutants. It was observed
that equivalent mutant reduction decreases with the
increase in LOC (see Figure 6) or branch coverage (see
Figure 7) for all the strategies except NeighPair.

The observed results are in line with our expectations
(as the SOM approach hides equivalent mutants behind
killable mutants or, looking from a different perspec-
tive, excludes equivalent mutants by combining them

with the non-equivalent ones) but SOM strategies still
differ between each other with regard to the number
of equivalent mutants and this information can be of
practical importance.

On the basis of the empirical results (presented in
this section) and statistical analysis of the equivalent
mutants reduction (described in detail in Appendix
A2 [51]) one may come to the conclusion labelled as
Finding 2.

Finding 2: The second order mutation signifi-
cantly reduced the number of equivalent mutants
in comparison to the first order mutation. The size
of the effect was medium [67].

Other findings, e.g. related to the loss in testing
strength, are discussed in subsequent sections.

6.3 Live mutant reduction

Table 6 presents the numbers of not killed (live) mu-
tants which had to be classified as equivalent or non-
equivalent. It is fairly easy to observe that the Judy-
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Fig. 6. The ratio of equivalent mutant reduction to lines
of code in the project.
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Fig. 7. The ratio of equivalent mutant reduction to the
project’s branch coverage.

DiffOp exhibits the best results among these four algo-
rithms.

TABLE 6
Number of live (i.e. not killed) mutants in the population
using First Order Mutation (FOM) and different Second

Order Mutation (SOM) strategies.

Project FOM SOM strategies:
name Random Last2 Judy Neigh

Mix First DiffOp Pair
Barbecue 661 289 282 80 303
Commons IO 972 296 274 262 446
Commons Lang 4973 979 945 699 1404
Commons Math 4974 664 932 753 1115

On the basis of the empirical results (presented in
this section) and statistical analysis of the live mutants
reduction (described in detail in Appendix A3 [51]) one
may come to the conclusion labelled as Finding 3.

Finding 3: The second order mutation strategy,
called JudyDiffOp, significantly reduced the num-
ber of not killed mutants in comparison with the
first order mutation. The size of the effect was large.

The magnitude of the observed effect is an indicator
of its practical importance which, in turn, comes from
the extremely high cost of manual classification of not
killed mutants (as equivalent or non-equivalent).

6.4 Relative change in mutation score estimations

We measured the relative change in mutation score es-
timations (RCMSE) for each SOM (HOM) strategy in
comparison to FOM. It allowed us to compare the FOM
and the SOM results in mutation score estimations
employing results from manual classification of 1000
live mutants as equivalent or non-equivalent. The de-
tailed results of the manual classification of live mutants
are presented in Section 6.2, while the experimental

procedure (including sampling strategy) is described in
Section 5.3.

The basic terms needed to define our RCMSE metric
(the relative change in mutation score estimations) are
as follows: MK is the number of killed mutants in the
analysed mutation strategy (FOM or SOM), MT is the
total number of produced mutants (i.e. killed and live
mutants added up:MK +ML) in the analysed mutation
strategy (FOM or SOM) and M̂E is the estimated
number of equivalent mutants in the analysed mutation
strategy (FOM or SOM). The estimated number of
equivalent mutants (M̂E) comes from the number of
live mutants (ML) and the ratio of equivalent mutants
in the manually classified sample (REsample). The ratio
of equivalent mutants in the manually classified sample
is defined as follows: REsample = MEsample

SampleSize , where
MEsample is the number of equivalent mutants in the
manually classified sample, while SampleSize is the
number of mutants in the each manually classified sam-
ple, i.e. fifty mutants per each of the analysed projects
and each of the analysed mutation strategy.

Let M̂SF OM and M̂Ss be the estimations of the
mutation score for the FOM and SOM strategies, re-
spectively, obtained from the following equation

(3)

M̂S = MK

MT − M̂E

= MK

MT − (MA ×REsample)

= MK

MT − (ML × MEsample

SampleSize )

Having all the basic ingredients defined we may define
our RCMSE metric as follows:

RCMSE = M̂Ss − M̂SF OM

M̂SF OM

(4)

Both, FOMs and SOMs were generated by using the
Judy mutation testing tool for Java. Mutation operators
implemented in Judy are presented in detail in Table 3.
It is worth mentioning that removing all equivalent
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mutants first is not feasible if we analyse real world
projects, i.e. the large number of mutants, as we did.

Our RCMSE metric is expressed as a ratio and is
a unitless number. By multiplying this ratio by 100 it
can be expressed as percentage, so the term percentage
change in mutations score indicators may also be used.

Table 7 presents results regarding RCMSE and con-
firms (as we expected) that there is some difference in
mutation score estimations between FOM and SOMs.

TABLE 7
Relative change in mutation score estimations

Project FOM SOM strategies:
name Random Last2 Judy Neigh

Mix First DiffOp Pair
Barbecue 0 -.198 -.214 .152 -.055
Commons IO 0 .045 .051 .024 .016
Commons Lang 0 .170 .172 .166 .141
Commons Math 0 .166 .135 .141 .128

Finding 4: Second order mutation strategies
affected mutation score estimations and, as a result,
RCMSE defined by Equation 4. In most of the
cases mutation score estimations were higher for
the SOM strategies than for FOM.

This finding can be seen as a disadvantage of the
SOM strategies, as it may suggest that our second order
mutants could be easier to kill than first order mutants.
Furthermore, the relative change grows over 0.1 in 11 of
16 subjects. Therefore, we will further investigate this
issue in Section 6.5.

6.5 Relative change in mutation score indicators
We measured the relative change in mutation score
indicators for the SOM strategy (or the HOM strategy
in general) in comparison to FOM. We named the
metric the relative change in mutation score indicators
(RCMSI) and defined as follows:

RCMSI = MSIs −MSIF OM

MSIF OM
(5)

where MSIF OM is the mutation score indicator (see
Equation 2) calculated by means of the classic FOM
strategy, while MSIs is the mutation score indicator
calculated by means of the analysed SOM/HOM strat-
egy (s).
Our RCMSI metric is also expressed as a ratio and

is a unitless number. By multiplying this ratio by 100
it can be expressed as percentage, so the term percent-
age change in mutations score indicators may also be
used. Summarizing, our RCMSI metric allows us to
compare the FOM and the SOM results in mutation
score indicators.

Table 8 presents results regarding RCMSI and con-
firms (as we expected) that there is some difference in
mutation score indicators between FOM and SOMs.

TABLE 8
Relative change in mutation score indicators

Project FOM SOM strategies:
name Random Last2 Judy Neigh

Mix First DiffOp Pair
Barbecue 0 .198 .228 .837 .136
Commons IO 0 .077 .085 .059 .017
Commons Lang 0 .235 .240 .236 .169
Commons Math 0 .215 .182 .192 .160

Finding 5: Second order mutation strategies
affected mutation score indicators and, as a result,
RCMSI defined by Equation 5. In all of the cases
mutation score indicators were higher for the SOM
strategies than for FOM.

The obtained results suggest that unit tests included
in the analysed software projects killed proportionally
fewer first order mutants than second order mutants
in all of the projects and all of the SOM strategies.
Furthermore, the relative change grows over 0.1 in 12
of 16 subjects. These results strengthen the conviction
from Section 6.4 that our second order mutants appear
to be easier to kill then first order mutants. Hence,
further research will be focused on obtaining better
higher order mutants. A promising way to achieve that
goal, suggested by Harman et al. [23], [29], [30], [45], is
to search for the HOMs which can subsume their first
order counterparts (a subsuming HOM is harder to kill
than the FOMs from which it is constructed), thereby
reducing test effort without reducing test effectiveness.

6.6 Time of mutation testing process
One of the main reasons why mutation testing is not
used in industrial projects is the fact that it is a highly
time-consuming process. Fortunately, in our case, the
number of generated mutants decreased by 50–72% due
to the applied SOM strategies (72% was obtained in
Barbecue project when the JudyDiffOp SOM strategy
was used, see Table 4). As a result, SOM caused a
useful reduction in the time needed for testing mutants
even though there is some overhead for generating the
second order mutants instead of the first order ones.
Fortunately, SOM generation time accounts for only
about 3% of the total time. The total time spent on
the mutation testing process is presented in Table 9.

The overall time for running the JudyDiffOp SOM
strategy dropped 67% on average, as compared with
first order mutation. It may be noticed that those re-
sults are strictly related to the reduction of generated
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TABLE 9
Time spent on mutation testing process in seconds.

Project FOM SOM strategies:
name Random Last2 Judy Neigh

Mix First DiffOp Pair
Barbecue 18.83 8.85 9.25 5.95 8.81
Comm. IO 315.32 178.97 231.00 132.27 219.43
Comm. Lang 1207.31 600.86 504.03 359.84 536.17
Comm. Math 1727.16 642.59 688.46 498.75 534.42

mutants as presented in Table 4, e.g. the average re-
duction of mutants in the case of the JudyDiffOp SOM
strategy equals 63.5%.

On the basis of the empirical results (presented in this
section) and statistical analysis of the mutation testing
time (described in detail in Appendix A4 [51]) one may
arrive at the conclusion labelled as Finding 6.

Finding 6: The second order mutation strategy
called JudyDiffOp significantly reduced the muta-
tion testing time in comparison with first order
mutation. The size of the effect was large.

6.7 Manual mutants classification time
The time required for manual assessment (whether the
mutant is equivalent or non-equivalent) is well known
as one of the vital problems in mutation testing. As
observed by Schuler and Zeller [72], it takes on average
14 minutes and 28 seconds to assess one single first
order mutation for equivalence. We have measured the
classification time for FOMs as well as SOMs, as an
extension of Schuler and Zeller’s study and, as in their
investigation, the variance was high. The minimum
classification time for FOM was 2 minutes 5 seconds,
while the maximum was 26 minutes 40 seconds. For
SOMs, the boundary classification time was 55 seconds
and 26 minutes. The obtained results are shown in
Table 10. We assessed 200 FOMs (sample size of 50
mutants for each of the four projects) and 800 SOMs
(sample size of 50 mutants; four strategies for each of
the four projects—all randomly selected).

TABLE 10
FOMs and SOMs classification times [min:sec].

Project FOM SOM strategies:
name Random Last2 Judy Neigh SOM

Mix First DiffOp Pair Ave

Barbecue 11:49 10:13 10:08 09:34 09:59 09:58
Comm. IO 12:56 09:44 08:57 09:26 09:26 09:23
Comm. Lang 11:13 08:16 08:32 08:04 09:42 08:39
Comm. Math 13:10 10:02 10:40 09:34 11:21 10:24
Average time 12:17 09:34 09:34 09:09 10:07 09:36

One can easily see that the average classification

time for the SOM strategies is shorter than for FOM.
This might be explained as the effect of the second
order mutations’ characteristics, as described in detail
by Polo et al. [65, Table I], e.g. if one of the constituent
first order mutations involves examining large parts
of the program we can, instead, focus on the second
constituent FOM which might be easier to assess. Ac-
cording to Polo et al. [65], the combination of two first-
order non-equivalent mutants produces, in general, one
second-order non-equivalent mutant. The exception to
that rule is possible, but extremely rare. Furthermore,
if one of the two first-order mutants is non-equivalent,
then the second order mutant is non-equivalent as well
(see [65, Table I]). As a result, the time spent on the
manual assessment of mutants may be minimized in the
case of a second-order mutation.

On the basis of the empirical results (presented in
this section) and statistical analysis of manual mutants’
classification times (described in detail in Appendix
A5 [51]), one may come to the conclusion labelled as
Finding 7.

Finding 7: The second-order mutation strategy
significantly reduced the time needed for the man-
ual classification of mutants as equivalent or non-
equivalent in comparison with the first-order muta-
tion. The size of the effect was medium. A more de-
tailed analysis shows that each of the second-order
mutation strategies (i.e. JudyDiffOp, RandomMix,
Last2First, NeighPair) significantly reduced the
time needed for the manual classification of mu-
tants as equivalent or non-equivalent in comparison
with the first-order mutation, while the size of the
effects were considered small to medium.

6.8 Summary of the experimental results

The experiment indicated strongly that SOM in general
and JudyDiffOp strategy in particular increase most
the efficiency of mutation testing and provide the best
results in all but one (the relative change in mutation
scores measured via RCMSE and RCMSI) of the
investigated areas:

1) There was a significant difference in the total
number of mutants generated using the FOM
and the four SOM strategies (χ2(4) = 16.00,
p < .001). Using JudyDiffOp SOM strategy (as
well as the other analysed SOM strategies) instead
of FOM significantly reduced the total number of
mutants, while the effect size was large (r = .65,
Â = 1).

2) There was a significant association between the
type of mutation strategy (i.e. FOM vs. SOM)
and whether the generated mutant was equivalent
or not (χ2(1) = 30.066, p < .001), while the effect
size was medium (the odds ratio was 2.57).
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3) The number of not killed mutants was signif-
icantly affected by mutation strategy applied
(χ2(4) = 14.20, p < .001). JudyDiffOp SOM
strategy significantly reduced the number of not
killed mutants in comparison to FOM, while the
effect size was large (r = .65, Â = 1).

4) The SOM strategies negatively affected mutation
scores measured via relative change in mutation
score estimations (RCMSE) and relative change
in mutation score indicators (RCMSI), so there
is still an area for improvement of the SOM strate-
gies.

5) The mutation testing time was significantly af-
fected by the mutation strategy applied (χ2(4) =
13.60, p = .001). JudyDiffOp SOM strategy sig-
nificantly reduced the mutation testing time in
comparison with FOM, while the effect size was
large (r = .65, Â = 1).

6) Using SOM instead of FOM significantly reduced
the time needed for manual classification of mu-
tants as equivalent or non-equivalent (t(998) =
6.68, p < .001), while the effect size was medium
(r = .21).

A visual summary of the experimental results related
to the number of mutants is presented in Figure 8.
The numbers of killed and live (not-killed) mutants
were added up across the four analysed projects. The
numbers of equivalent and non-equivalent mutants in
the analysed projects are estimated on the basis of man-
ually classified samples (1000 mutants were classified
manually).

0 10000 20000 30000 40000 50000

FOM

RandomMix

Last2First

JudyDiffOp

NeighPair

Number of killed mutants in analyzed projects

Est. number of live non-equivalent mutants in analysed projects

Est. number of live equivalent mutants in analysed projects

Fig. 8. Comparison of mutation strategies with regard to
the number of mutants in four analysed projects

7 Threats to validity
When conducting an experiment, there are always
threats to the validity of the results (the validity threats
for the systematic literature review have already been
discussed separately in Section 3.5). Here, the main
threats are discussed on the basis of the list of threats
by Cook and Campbell [10] and later described in the
context of software engineering by, for example, Wohlin
et al. [77] and Madeyski [50].

The internal validity of the experiment concerns our
ability to draw conclusions about the connections be-
tween our independent and dependent variables [77].
There may be threats related to the manual assessment
of mutants’ equivalence. This part might also be subject
to errors and bias. To reduce that threat, the manual
cross verification of the obtained results was undertaken
between two researchers.
External validity refers to our ability to generalize

the results of our study [77]. We examined 50 sample
mutations for each strategy and for each of the four
non-trivial open source projects. The code size of the
analysed projects is larger than in other studies (as
shown in Section 5.1).

Even though the analysed projects have disparate
characteristics, there is no guarantee that the same re-
sults will be obtained for other, very different programs
(e.g. with poor code coverage or low fault detection
effectiveness measured by the mutation score indicator).
However, taking into account the size of the effects
and practical implications of the presented results, the
relevance to industry, which is a part of external valid-
ity [50], seems to be plausible.

Threats to construct validity are “the degree to which
the independent and the dependent variables are accu-
rately measured by the measurement instrument used
in the experiment” [77]. The counting of generated
mutants was fully automated in the Judy mutation test-
ing tool. Regarding the manual assessment of mutants’
equivalence, the ultimate measure of whether a mutant
is non-equivalent is whether or not we are able to write a
test which detects a mutation [72]. Preventing possible
diffusion or imitation of treatments (i.e. mutation test-
ing strategies) was never an issue since Judy mutation
testing tool prevents it.

Threats to the statistical conclusion “refers to the ap-
propriate use of statistics to infer whether the presumed
independent and dependent variables covary” [10]. To
address the risk of low statistical power, we selected a
sample size of 50 mutants for each of the four analysed
projects and five strategies (1,000 manually classified
mutants in total). Moreover, for the sampling method,
true random numbers were used. Even though it would
have been appropriate to choose a larger sample size,
a researcher has to strike a balance between generaliz-
ability and statistical power [3], as well as the effort.
Violating the assumptions of statistical tests was mini-
mized by means of non-parametric statistics, as well as
the careful checking of the assumptions in cases where
parametric tests were used (see Appendix A [51]).

8 Discussion
We interpret our results in such a way that using sec-
ond order mutant generation strategies, in particular
the JudyDiffOp algorithm, has a positive influence on
effectiveness in solving the equivalent mutant problem.
However, an alternative explanation of the results could
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be that the SOM approach hides some of the equivalent
mutants behind killable mutants. This is something
which needs further research as it may mean that using
SOMs to reduce the number of equivalent mutants is
not cost effective. Moreover, the authors have discov-
ered that manual classification of second order mutants,
against its equivalence, takes less time than with first
order mutants.

One contribution of the SLR in comparison to Jia and
Harman’s survey [31] is what we believe to be a more
complete list of existing solutions for the equivalent
mutant problem in particular. With a much deeper re-
view of available sources, including coming into contact
with all relevant authors and scanning their personal
websites, more methods were identified. We have, in
particular, investigated the idea of avoiding the equiv-
alent mutant generation techniques as an additional
group of approaches and found some omitted methods
in other categories. Obviously, because of the focus
on the equivalent mutant problem, and having more
delimited research questions, our study results are, in
our opinion, of high quality from the perspective of
EMP. What is important, nevertheless, is that taking
a subset of Jia and Harman’s results will not give as
complete a view on EMP as our SLR.

We have, in addition, proposed the first ever catego-
rization of the existing techniques for EMP. With an
increasing number of publications in this field of study,
such a classification will, it is our hope, improve trans-
parency and allow for a better understanding of the
benefits, disadvantages and differences between meth-
ods. Also, because we included theoretical and unproven
ideas on how to improve the existing methods and,
furthermore, provided what we believe to be a complete
review of EMP, this SLR might be a good starting point
for future work.

Our contribution from the comparative experiment
is the idea, implementation and empirical evaluation of
the new as well as the existing strategies for generating
second order mutants.

The subsequent contribution of this experiment was
the independent investigation of the characteristics of
practical application of three existing strategies as pro-
posed by Polo et al. [65]. Polo et al. and Papadakis and
Malevris [63] have evaluated these strategies before, but
only on small projects. In our research, four larger open
source projects were used. Additionally, the authors of
the previous studies, in particular [63], [65], used some
approximation instead of manual mutants evaluation
(as we did).

One additional result of our experiment is the mea-
sured time for manual mutant classification against its
equivalence. This was the second documented measure-
ment of first order mutants assessment. The first was
made by Schuler and Zeller [72] on 140 mutants. In our
study, a bigger sample size was used (200 FOMs). More-
over, we are the first who also documented the manual
second order mutants classification (800 SOMs), that is,

the basis to estimate the real cost of mutation testing
(including equivalent mutant elimination).

Our additional contribution which is directly con-
nected with the aforementioned contributions is a tool
— Judy mutation testing tool for Java — which is
under development with two early versions available
online [53]. We believe that our tool may have a positive
impact on research and practice in this area.

We believe that the above mentioned contributions
make this work important for future mutation testing
research. Identifying all methods for EMP, classifying
them and collecting the ideas for improvements is by
itself valuable, while the investigation of the behaviour
of the existing algorithms should be relevant for com-
panies interested in mutation testing.

9 Conclusions and future work
In our opinion, mutation testing is not widely used,
mainly because of the problem of efficiency, the genera-
tion of too many equivalent mutants, and lack of reliable
and usable tools able to integrate with different software
development infrastructures and processes. This paper
examined a second order mutation approach to deal
with those issues specifically. We evaluated the concept
of using a set of second order mutants by applying them
to large open source software and, thus, increasing the
generalizability of this approach. For our experiment
we implemented, in the Judy mutation testing tool, dif-
ferent algorithms: Last2First, RandomMix, JudyDiffOp,
and NeighPair. The first two algorithms were proposed
by Polo et al. [65]. The idea for the third one (coined by
Polo et al. [65]) was improved by us, while the fourth
one was completely new.

This study shows that second order mutation tech-
niques can significantly improve the efficiency of mu-
tation testing at a cost in the testing strength (see
Sections 6.4 and 6.5). All four SOM strategies reduced
the number of generated mutants by 50% or more.
Furthermore, the amount of equivalent mutants has
been notably decreased for three of the four strategies.
The best results were achieved with the JudyDiffOp al-
gorithm. An alternative explanation of the results could
be that the SOM approach hides some of the equivalent
mutants behind killable mutants and it may be subject
to future research. What is more, the measured time
needed for the classification of equivalent mutants, of
both first and second order, indicates quite strongly
that the time needed to manually evaluate mutants
can be reduced even more when using second order
mutation.

The reduction of generated mutants caused a de-
crease in the time needed for their execution, with
approximately 30% of the original time for the most
efficient algorithm, i.e. JudyDiffOp.

It is also worth noting that second and higher order
mutation are not only valuable as a way to address
EMP. They also allow us to look at fault masking
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and to address subtle faults [29]. Previously, this was
thought simply impossible because of the large number
of mutants required, but it has been shown that search
based optimisation algorithms [24] can tame this space
quite nicely, so that we can search for good HOMs and
need not consider all of them [23], [29], [30].

There is still much work to be done in the field of
mutation testing. This paper shows, in our opinion, that
second order mutation can be an interesting solution for
common problems in mutation testing; however, that
can be developed further. Mutants of a higher than
second order should be tested on larger programs and
other strategies (e.g. employing search based approach)
might also be considered. Additionally, the combination
of higher order and selective mutation could reduce
both the number of equivalent mutants and the exe-
cution time even further.
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