
Searching for Models to Evaluate Software
Technology

Francisco Gomes de Oliveira Neto1

Software Practices Laboratory
Universidade Federal Campina Grande

Campina Grande, Brazil
netojin@copin.ufcg.edu.br

Robert Feldt, Richard Torkar
Dept. of Computer Science and Engineering

Chalmers and Gothenburg University
Gothenburg, Sweden

{robert.feldt,richard.torkar}@chalmers.se

Patrı́cia D. L. Machado1

Software Practices Laboratory
Universidade Federal Campina Grande

Campina Grande, Brazil
patricia@computacao.ufcg.edu.br

Abstract—Modeling and abstraction is key in all engineering
processes and have found extensive use also in software engi-
neering. When developing new methodologies and techniques
to support software engineers we want to evaluate them on
realistic models. However, this is a challenge since (1) it is hard
to get industry to give access to their models, and (2) we need a
large number of models to systematically evaluate a technology.
This paper proposes that search-based techniques can be used
to search for models with desirable properties, which can then
be used to systematically evaluate model-based technologies. By
targeting properties seen in industrial models we can then get the
best of both worlds: models that are similar to models used in
industry but in quantities that allow extensive experimentation.
To exemplify our ideas we consider a specific case in which a
model generator is used to create models to test a regression test
optimization technique.

Index Terms—Automatic Model Generation, Search-Based
Techniques, Model-based Software Engineering Technology.

I. INTRODUCTION

Models are a central concept in any engineering discipline
and have found many uses also in software engineering [12].
Models can be used on multiple abstraction levels and in sev-
eral stages of software development from project, requirements
to testing. Besides providing valuable information regarding
the product being developed, in many cases they help automate
some of the development activities; in fact this is often a
driving factor in developing models in the first place.

Several studies have described benefits of using model-
based (MB) techniques [13]. However, there are also draw-
backs and in particular the area has been criticized for a
general lack of empirical evaluation. For example, a systematic
review on model-based testing concluded that there was a
general lack of empirical evaluation and transfer to industrial
use [4]. There are many reasons for why this is the case. In
this paper we focus on what we think is a key reason: even if
we want and try to perform systematic, empirical evaluation
we often cannot find enough number of realistic models to
allow conclusive results. Basically, for models to be realistic
they should have a size, type and other characteristics that
are typical of the models used in organisations developing
software. However, these organisations are often reluctant to
share their models; the models are a key part of the economic
value and competitive advantage of these organisation. And
even if a few organisations would give models for research, the
number of models so gained might not be numerous enough

1This work is supported by CNPq grants 484643/2011-8 and 573964/2008-
4. First author is also supported by CAPES.

or diverse enough to allow a systematic and statistically valid
evaluation of model-based software technologies.

To address this situation we propose to combine search-
based techniques and stochastic model generation with statis-
tical summaries of realistic models. Statistical summaries of
actual models used in the software industry allows an effective
form of anonymization; most companies would allow us to run
scripts on their models in-house and just export the descriptive
statistics. Combining this information with stochastic model
generators would allow us to generate large number of models
that share characteristics with industrial models. However, by
adding search and optimization to this mix we can also ensure
diverse models, for example finding models that are easy or
hard for the technology being evaluated. In general, search-
based techniques would allow exploration and visualisation of
different spaces of models as well as the difficulty for the
technique over this space [6], [7].

To illustrate our ideas, we use a model generator to evaluate
a model-based regression test (MBRT) selection technique.
Our generated models represents a generic reactive determin-
istic software, where the system reacts to inputs by showing
expected output in a state-based format. After modifying the
models we can use them to generate test cases and execute the
selection technique. The goal is to explore how the models’
characteristics affect the performance of the technique, thus
pointing to areas of improvement based on a deeper under-
standing of both strengths and limitations.

In the following, we present related work on model gener-
ation (Section II) and then present an example case of model
generation for evaluating a MBRT optimization technique (III).
Section IV explores our core idea and present three different
types of search-based model-generation for tech evaluation
(SBMTE) and explores their use on our example case. Finally,
Section V concludes.

II. BACKGROUND AND RELATED WORK

Models allow the representation of external, internal, behav-
ioral and structural interactions, improving the understanding
of the software. We can use MB techniques to automati-
cally harness information from models for a specific purpose
(e.g. test case generation, fault detection and risk analysis).
Therefore, it is important to have a well specified model. The
quality of the model depends on several variables such as the
format of the model used (UML Diagrams, State Machines,
Control Flow Graphs, among others) or the expertise of the
people responsible for building the model [5], thus, modeling

978-1-4673-6284-9/13 c© 2013 IEEE CMSBSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

12

consumes a lot of time and effort. In these cases, an alternative
is to automatically generate or transform it from other format.

Automatic model generation is discussed in different fields
of software research. Feng et al. [9] generate models for
testing of real-time embedded systems, where the specification
provides better visualization, thus facilitating its integration
and analysis. In their work, a machine learning approach
generates a control flow from execution traces. Huselius et
al. present similar work, targeting legacy systems [11].

In both studies, the generation relies on information of
traces of execution from a program. The goal is to obtain
information about the system from which the model is being
generated, such as prototyping of future design, or retrieve
data dependencies. In our approach, we target generation of
models to execute MB techniques.

Deeptimahanti and Sanyal [3] propose a semi-automatic
generation of UML models from natural language specifi-
cations through natural language processing techniques. The
authors provide tool support (UMGAR) that generates use-
case diagrams, analysis class model, collaboration diagram,
and design class model. The use case templates used by
the authors provides a level of abstraction similar to the
models that our strategy generates. However, the generation
still depends on human interaction to remove irrelevant classes
in diagrams. Also, the generation is for specifications de-
scribed in natural language (sentences with subjects, verbs,
etc.) hampering instrumentation when generation of a large
quantity of models is required.

In the model-driven engineering (MDE) field, model trans-
formations need to be tested, and models have to be generated
to enable the testing of these transformations. In this context,
models are generated from meta-models or Object Constraint
Language (OCL) expressions determining possible inputs and
outputs of the target model [10], [14]. In these studies,
modeling or analysis is required prior to generation, focused
on the transformation to be tested.

On the other hand, our goal is to enable a much simpler
and yet generic model generation to allow early execution
or evaluation of MB techniques in combination with search-
based techniques. The inputs of our generator are values
describing the models that need to be generated independent
of a particular context of application. In turn, these values
can be obtained, for example, from models of other projects
inside the industry or reported in the literature. It is important
to notice that MDE concepts and technology can also be used
to support our solution.

III. EXAMPLE OF GENERATION FOR MB TESTING

This section illustrates the use of a model generator to
evaluate a technique for MBRT selection (Fig. 1). The goal
is to execute the technique on several test suites and then
perform statistical analysis on the results. Since numerous test
suites are required to achieve statistically valid evaluation, we
developed a generator to create models that, in turn, generate
test cases allowing the execution of the technique.

The models are generated and modified according to a
set of values (i.e. parameters) expressing characteristics of
the desired type of model (e.g. size, number of branches,
paths with loops and additions). By varying these values and
generating different test suites we analyze the selected test

Test cases
(delta)

Test cases
(baseline)

Selected
Test Cases

Automatic
Generation

Automatic
Modification

Automatic
Test Case

Generation

Regression Test Case
Selection

Baseline
Model

Delta
Model

Parameters

Response
Variables Analysis

Execution

Fig. 1. Using the model generator in an MBT technique for regression test
case selection.

cases and draw conclusions regarding the performance of the
technique and the characteristics of the models being modified.

A. Automatic Generation Strategy

One of the challenges is to choose a format of model capable
of expressing real specifications, which could be constructed
automatically. With that in mind, we decided to use a Labeled
Transitions System (LTS), to generate our models, since the
different paths of an LTS can represent sequences of inputs
and outputs around the common and alternative flows being
tested. Furthermore, they have already been widely used for
automatic test case generation and selection [1], [2]. LTS is
defined as a 4-tuple S = (Q;A;T ; q0), with: the set of states
(Q); a finite nonempty set of labels (A); the transition relation
(T ⊆ (Q×A×Q)); and the initial state (q0).

Figure 2 shows an example of an LTS representing different
flows in a simple application (inputs and outputs are marked
by “?” and “!”, respectively). The sequences of inputs and
outputs determine the behavior being modeled, since flows
can branch into alternative paths and join again in common
scenarios. Each path in a LTS represents a test case.

? Select “Send Item” option

! Display list of options is displayed

! ”Want to send other item?”
message is displayed

! List of image files
 is displayed

? Include an
Image File

? Press “Send Image”
 button

! “Items sent” message
 is displayed

? Include a
saved message

! List of messages is
displayed

? Select the message
and press “Send”

? Select “Cancel”
option

? Press “No” button

? Press “Yes”
button

! “No items were sent”
 message is displayed

? Press “Return” icon.

! Main menu
 is displayed

Fig. 2. Example of an LTS as a specification model.

LTSs provide a powerful level of abstraction, and have sim-
ple structures capable of expressing a variety of applications.

13

Some tools use LTS as an input format, and it can be trans-
formed from other model formats (e.g. sequence diagrams)
[1]. The states and transition also provide an intuitive idea
about the scenarios that can be executed, allowing an easy
understanding of what is being specified.

B. Parameters and Structures
The transitions in the LTS represent the execution of a step

of the software going from one location to another. From
now on we will refer to locations as states of the LTS2. The
parameters for generation are the quantity, size3 and structures
of the LTS.

Firstly, a sequence in the specified size is generated (i.e. the
main flow), then paths with loops, branches and joins (Fig. 3
(a), (b) and (c) respectively) are added in arbitrary locations of
the LTS. That process continues until the specified number of
LTS are generated. In the end, transitions are carefully added
and removed from the generated model to obtain different
versions and perform regression test case selection. With that
idea it is possible to automatically generate several different
LTS graphs. Despite being different, the parameters provide
some level of control allowing the generation of similar LTS.

!a

?C

!c

?B

!b

?D ?E

!y

!x

?X_2

!w

?X_1

?M

!m

?N

!n

?O

?P

?Z

…

…

…

…

…

…

…

…

(a) (b) (c)

Fig. 3. Different structures used to generate an LTS. (a) Path with loops; (b)
Branch or alternative flows; (c) Joins or common flows;

C. About the Generation
Models such as the ones we generate can be used for

statistical analysis, since the parameters can be changed ob-
taining different results. An example here is to investigate
the scalability of a technique’s performance as the size of
the model grows. The parameters can be adjusted to generate
bigger and more complex models allowing for the investigation
of how the technique behaves with such models. The results
can then be used to improve the technique.

The generation can also be based on parameters obtained
from real models, e.g. analyzing models from a repository.
This allows the generation to be targeted to a specific type of
model, but using inappropriate values can affect the represen-
tativeness of the models being generated. On the other hand,
many models have common entities that need to comply with
meta-models, for example, UML use case or sequence dia-
grams. These common entities can then be used as parameters
for comparison of different models generated.

2The state in a LTS differs from the idea of a state in a Finite State Machine
because it does not represent a system state (e.g. “Running” or “Waiting for
input”), instead it represents a state of the execution flow.

3In this work we consider the size to be the number of transitions in the
main flow specified. For example, a size 4 will yield an LTS with 4 inputs
and 4 outputs in the main flow.

Also, general metrics from graph theory can be used to
explain properties of the models. An example is the use of
eccentricity and other distance measures in social networks,
or clustering of states and transitions to compare models
and identify modifications. This provides different scenarios
where our generator can be integrated and used. Currently,
the example and generator described in this work are currently
implemented in the LTS-BT tool [2].

IV. SEARCH-BASED MODEL GENERATION FOR
TECHNOLOGY EVALUATION (SBMTE)

We propose a simple, 2-dimensional model of approaches
to evaluating model-based software engineering technology, as
shown in Fig. 4. The approaches vary on two main dimensions:
realism of models (along vertical axis in the figure, note that
here only two approaches, both of high realism, are actually
shown), type of search employed (varies from left to right
on horizontal axis, left-most and right-most shown). Note that
all of our approaches assume the existence of a stochastic
model generator that can generate models of the right type
given values for or distributions over model parameters4. In the
example in Section III, the model parameters are the number
of states, joins, branches and paths with loops.

The realism dimension is used to denote variation along
a continuum of different levels of realism. Only the most
realistic level is shown in the figure. At this level model
property extraction is used to get summary and descriptive
statistics about models actually used in industry. This might
be easier for some aspects of models (nodes, connections
etc.) than others (constraints and semantic information in
the models, for example). We propose that the researchers
construct extraction scripts that industrial partners can apply
on their models and send back characteristic model parameters
(script-based property extraction). For lower levels of realism
the researchers have basic descriptive statistics about model
parameters only from a few companies or guess them from
existing literature relevant for the model types being studied.
At the lowest level of realism the researcher has no informa-
tion about characteristic models; however, such zero realism
SBMTE can still give valid technology evaluation if combined
with search.

Realism

Search type

Property
extraction

Model
Generator

No Search
(Random)

Model Search
(Offline)

Tech Performance
Search (Online)

Industrial
models

...

Property
extraction

Model
Generator

Industrial
models

MB
Technique

Search/
Optimization

... ...None (toy)

High
(industrial)

...

Fig. 4. Two-dimensional model of approaches for SBMTE.

4This restriction is not essential though, since a simpler model generator
can be combined with search and thus act as a more adept generator.

14

For the search-type dimension we propose that at least three
different levels should be distinguished. At the basic level no
optimizing search is used, essentially this amounts to a random
search given the model generator. Without realistic model
parameters this could be used to evaluate our MBRT technique
by generating many small, often called toy, models ensuring
the technique is feasible. By getting realistic model parameters
from industrial partners a ‘random search SBMTE’ could be
used to collect convincing evidence that a technology would
scale to and work for actual industrial systems. However, by
going to the next level of search we could search for models
with specific combinations of parameters that may not be
directly available among the industrial models from which we
extracted typical properties. Basically the search would allow
us to explore the space of possible models around the region
for which we have (high realism) or have not (low realism)
information about typical models. As noted by Feldt in other
studies, interactive visualisation of high-dimensional data is
likely to be key in making this exploration useful [7].

The next level of SBMTE would use performance measures
of applying the technique itself on the generated models to
guide the search in the model space. This ‘online SBMTE’
would allow specific models and areas of the model space to
be found for which the technique performs well or badly, or
have shorter/longer execution times. This could be essential
in allowing the proper evaluation of a MB technique and
allow visual comparison and trade-off between different MB
techniques. However, since many MB techniques are time
consuming and the technique is ‘in the loop’ of the search
it is likely that this type of SBMTE would be costly. Thus it
is meaningful to distinguish it from model-focused SBMTE
where only characteristics about the models themselves are
used in the search. We propose to call this ‘offline SBMTE’.

For the MBT example in Section III we initially only had
a ‘low realism’, ‘no search’ approach to evaluation, i.e. in
the lower, left part of our SBMTE model in Fig. 4. By
developing our SBMTE model we clarified our thinking and
are currently exploring improvements to our MBT technology
evaluation along both dimensions. We have secured access to
realistic industrial models from which we will extract salient
properties. But we are also integrating the model generator
with a search-based optimization framework, built on Differ-
ential Evolution (DE) and Particle Swarm Optimization (PSO),
so we can do offline SBMTE. Once we have done high-
realism, offline SBMTE we will be able to consider online
SBMTE of the MBT. However, alternative solutions might
give similar benefits, for example fractional factorial designs
of experiments in combination with offline SBMTE might give
enough evaluation power, much as it has alleviated the need
for meta-optimization in other types of research [8].

V. CONCLUSION AND FUTURE WORK

This paper discusses the idea of combining automatic model
generation and search-based strategies for investigating MB
software technology. We showed how the generator can be
used with a MB testing technique, and then discussed the
evaluation of MB technologies considering the realism of
the models generated, and the type of search employed.
Our thinking about different approaches to combine these
technologies lead to a clarifying framework that has helped us

better structure and plan our ongoing work. We believe that
this SBMTE framework, with its two dimensions of realism
and search type, has general value and can be useful for other
researchers evaluating MB software technology.

Even though we exemplified our model on a specific type
of model, labeled transition systems, for the evaluation of
a specific MB technique, regression test case selection, the
SBMTE framework is not limited to any particular model
of technique. Different parameters to LTS models or wholly
different models can be investigated (e.g. activity diagrams
and use case diagrams). Modifications of specification models
can also benefit from our approach, since SBMTE can search
among the space of models to determine, for example, possible
changes that can be performed, or changes that have specific
characteristics. In the software engineering literature, MB
techniques have been proposed for several purposes (e.g.
specification, architecture and testing) and for different levels
of the software (e.g. unit, integration and system) yielding a
variety of combinations where our approach can be explored.

REFERENCES

[1] E. G. Cartaxo, W. A. Andrade, F. G. Oliveira Neto, and P. D. L.
Machado. Test case generation by means of uml sequence diagrams
and labeled transition systems. In ISIC. IEEE International Conference
on Systems, Man and Cybernetics, 2007, pages 1292–1297, 2007.

[2] E. G. Cartaxo, W. A. Andrade, F. G. Oliveira Neto, and P. D. L.
Machado. LTS-BT: a tool to generate and select functional test cases
for embedded systems. In SAC ’08: Proceedings of the 2008 ACM
Symposium on Applied Computing, pages 1540–1544, New York, NY,
USA, 2008. ACM.

[3] D. K. Deeptimahanti and R. Sanyal. Semi-automatic generation of uml
models from natural language requirements. In Proceedings of the 4th
India Software Engineering Conference, ISEC ’11, pages 165–174, New
York, NY, USA, 2011. ACM.

[4] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos.
A survey on model-based testing approaches: a systematic review.
In Proceedings of the 1st ACM international workshop on Empirical
assessment of software engineering languages and technologies, pages
31–36. ACM, 2007.

[5] I. K. El-Far. Enjoying the perks of model-based testing. In In
Proceedings of the Software Testing, Analysis, and Review Conference,
2001.

[6] R. Feldt. Generating diverse software versions with genetic program-
ming: an experimental study. Software, IEE Proceedings-, 145(6):228–
236, 1998.

[7] R. Feldt. Genetic programming as an explorative tool in-early software
development phases. Proceedings of the 1st International Workshop on
Soft Computing Applied to Software Engineering, pages 11–19, 1999.

[8] Robert Feldt and Peter Nordin. Using factorial experiments to evaluate
the effect of genetic programming parameters. volume 1802 of Lecture
Notes on Computer Science, pages 271–282, Edinburgh, 2000. Springer-
Verlag.

[9] T. H. Feng, L. Wang, W. Zheng, S. Kanajan, and S.A. Seshia. Automatic
model generation for black box real-time systems. In Design, Automa-
tion Test in Europe Conference Exhibition, 2007. DATE ’07, pages 1–6,
april 2007.

[10] E. Guerra. Specification-driven test generation for model transforma-
tions. In Theory and Practice of Model Transformations, volume 7307
of Lecture Notes in Computer Science, pages 40–55. Springer Berlin
Heidelberg, 2012.

[11] J. Huselius, J. Andersson, H. Hansson, and S. Punnekkat. Automatic
generation and validation of models of legacy software. In 12th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, 2006. Proceedings., pages 342 –349, 2006.

[12] J. Ludewig. Models in software engineering–an introduction. Software
and Systems Modeling, 2(1):5–14, 2003.

[13] B. Selic. The pragmatics of model-driven development. Software, IEEE,
20(5):19–25, 2003.

[14] S. Sen, B. Baudry, and J. M. Mottu. Automatic model generation
strategies for model transformation testing. In Proceedings of the 2nd
International Conference on Theory and Practice of Model Transforma-
tions, ICMT ’09, pages 148–164, Berlin, Heidelberg, 2009. Springer-
Verlag.

15

